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ABSTRACT

Established authorities have disagreed about the relative importance of the upper and lower atmosphere in
producing astronomical refraction for nearly two centuries. This paper resolves the problem and corrects some
prominent errors. The refraction near the horizon is explored in some detail, and its relation to terrestrial refraction,
and the effects of thermal inversions in the nocturnal boundary layer, are examined. At many observatories, the
refraction at the apparent horizon comes mostly from the air between the observatory and sea level.
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1. INTRODUCTION

This is the fourth in a series of papers (Young, Kattawar, &
Parviainen 1997; Young & Kattawar 1998; Young 2000) on
low-Sun phenomena. During this work, it has become apparent
that textbook presentations of refraction emphasize the calcu-
lation of numbers, rather than insight—especially near the
horizon. This paper is intended to rectify that lack.

For centuries, astronomers have known that atmospheric
refraction out to about 75

�
zenith distance (Z.D.) depends al-

most entirely on the temperature and pressure at the observer,
and not on the detailed structure of the atmosphere. This result
was first proved by Oriani (1787a, 1787b), though the fact
had already been noticed by Flamsteed, Newton, and other
early workers. Oriani’s theorem (as it is sometimes called)
accounts for the success of Cassini’s homogeneous-atmosphere
model in this part of the sky; an elegant proof of the theorem in
modern notation is given on pages 122–124 of Ball (1915), but
without mentioning Oriani.

However, it was clear that the refraction near the horizon is
not determined solely by the local temperature and pressure.
Delambre (1814, pp. 319–320) pointed out that ‘‘in the vicinity
of the horizon . . . from one day to another, and in circumstances
that were apparently the same, the refraction varied by 1500 to
2000 without one being able to suspect the cause; but the var-
iations are still more appreciable at the horizon.’’1 Delambre
offered several examples, including two days with the same
temperature and pressure but with horizontal refractions dif-
fering by some 40.

Indeed, much larger variations than these have been ob-
served occasionally, particularly at high latitudes, beginning
with the famous observations of the Dutch explorers led by
Willem Barents, in 1597. They observed the first sunrise in
spring 2 weeks earlier than expected, corresponding to a hori-
zontal refraction of over 4�. The typical horizontal refraction
near Hudson’s Bay was found to be ‘‘more than a degree’’ by
Captain Middleton (see Coats 1852, p. 132) in the winter of
1741–1742, a result confirmed by James Isham (see Rich &
Johnson 1949, p. 73) in the same area the next year. In modern
times, Nansen (1897) observed the Sun when it was 2

�
110 be-

low the horizon, and Shackleton (1962) reported a refraction

of 2�370. Recently, Sampson et al. (2003) reported refraction
exceeding 2

�
at Edmonton, Alberta.

But large refractions are not confined to high latitudes:
Bouris (1859) reported ‘‘whole series of stars regularly ob-
served with the meridian circle that culminate at Athens up to
4� below the horizon, such as � Lupi, �1 Arae, �2 Arae, � Arae,
. . . and Canopus,’’ and I myself have observed sunsets delayed
by more than 5 minutes in San Diego, California, corre-
sponding to refraction more than a degree greater than normal.
The obvious distortions of the Sun at the apparent horizon

have also puzzled many observers. The earliest systematic
observations seem to be those of Le Gentil (1779, pp. 393–
415), though scattered reports extend back to antiquity. Be-
sides the references included in O’Connell’s well-known book
(O’Connell 1958), the visual observations of Beuer (1901),
Schnippel (1901), Zona (1902), Graff (1906), Krčmář (1906),
Doss (1907), Wetekamp (1908), Fisher (1920, 1921), Hurand
(1930), Owen (1934), Moss (1938), Dines (1942), and Lamb
(1947) may be mentioned. These distortions, first photo-
graphed by Colton (1895a, 1895b), by Riccò (1901), and by
Rudaux (1906), have frustrated attempts (e.g., Hellerich 1928;
de Kort 1960; GyIri 1993) to use sunset photography for
determining the astronomical refraction for correcting routine
astrometric observations higher in the sky. Additional photo-
graphs were published by Rudaux (1927), by Chappell (1933),
and of course by O’Connell (1958). Photographs continue to
appear in Sky & Telescope (e.g., Baumgardt 1986; Sinnott
1986; Parviainen & Coombs 1987; Sampson 1993; Sinnott
1994; Brings 1995) and elsewhere.

2. NEGLECT

The attitude of astronomers toward low-altitude refraction
has generally been that expressed by Brinkley (1815), who
wrote, ‘‘It is well known to those conversant in observations
made with good instruments that near the horizon an irregu-
larity in refraction hitherto unexplained shews itself. This
commencing even at less zenith distances than 80�, is at first
very small, but increases to a very considerable irregularity as
we approach the horizon’’ (p. 108). But, rather than under-
standing the problem, he decided that ‘‘the quantity of refrac-
tion varies so much from some unexplained cause, the heights
of the barometer and thermometer remaining the same, that
observations below 80

�
can be of little use’’ (p. 81). So he1 Unless otherwise noted, all translations are my own.
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concluded that ‘‘it is not likely the irregularities will ever be
submitted to any law, and investigations respecting formulae
for refractions for zenith distances greater than about 80

�
may

be considered more curious than useful’’ (p. 117). The problem
has therefore remained largely ignored by both observers and
theoreticians, despite the large body of unexplained observa-
tional material.

However, Brinkley’s apathy should not stand unchallenged.
A more productive view was expressed by F. W. Bessel (1823).
In discussing his own observations below 5� altitude, he wrote,
‘‘In my efforts to obtain this material, I have regarded the
refractions not only as a means of reducing the observed zenith
distances, but believed that their determination possesses an
interest in itself. Taken in this measure, the solution of the
problem requires the extension of the tables all the way to the
horizon; but if it were just a matter of the reduction of obser-
vations, the tables would only be necessary to those heights at
which the stars still appear steady and clear; then the next 5�

at the horizon could well remain completely unknown.’’

2.1. Practical Applications

Indeed, a thorough understanding of refraction near the ho-
rizon can improve reductions of observations in the part of the
sky where astrometry is usually done, for if the low-altitude
refraction is not understood, it is not clear how far standard
refraction tables and formulae can be trusted. Different workers
have proposed different limits between 75� and 85� Z.D. And if
the variable lower atmosphere is important, local circumstances
may determine the cutoff; what is reliable at one observatory
might be unpredictable at another.

Furthermore, because data obtained from the Global Posi-
tioning System (GPS) satellites must be corrected for atmo-
spheric delays, and the satellites are at low angular altitudes
most of the time, the need to understand atmospheric effects
near the horizon has recently become more important.
According to Mendes et al. (2002), atmospheric refraction is
the main limitation to geodetic accuracy in GPS, very long
baseline interferometry, and satellite laser ranging.

2.2. A Remark on Terminology

Bessel’s use of ‘‘height’’ (Höhe) in the passage quoted above
raises a problem of terminology: just as in German and French a
single term is commonly used for both linear height above sea
level and angular distance above the horizon, the terms altitude
and height are occasionally used in English in both senses. A
referee has suggested that ‘‘zenith distance’’ would avoid the
problem, but as I have pointed out elsewhere (Kasten & Young
1989), this leaves us with an ambiguity of notation when the
structure of the atmosphere is involved: astronomers use z for
zenith distance, but meteorologists always use z for the vertical
linear coordinate. Besides, when discussing refraction near the
horizon, the natural reference point is the horizon, not the ze-
nith; so altitude, not zenith distance, is the more appropriate
angle.

Such questions have been debated for years: Horton (1922)
proposed ‘‘elevation’’ for height above sea level—a usage that
has become standard in geography and surveying—but ‘‘alti-
tude’’ for height above the ground, which conflicts with as-
tronomical practice. Besides, ‘‘elevation’’ is sometimes used
for angular altitude.

As concluded in Kasten & Young (1989), no compromise
can satisfy everyone. I shall use height for linear distance
above sea level, and altitude for angular distance above the

horizon. But, occasionally, quotations from other authors will
require the reader to be careful.

3. CONFLICTING EXPLANATIONS

3.1. Proponents of the Upper Atmosphere

Although the peculiar behavior of refraction near the hori-
zon has not been thoroughly investigated, many writers have
offered opinions about it. Some have stated that the cause lies
in the upper atmosphere. For example, James Ivory, in his
influential paper of 1823, says that the variations noted by
Delambre and by Brinkley at and beyond 75

�
Z.D. ‘‘are un-

doubtedly produced by alterations in the remote parts of the
atmosphere, which do not affect the barometer or the ther-
mometer placed at the Observatory’’ (Ivory 1823, p. 432). No
less an authority than Simon Newcomb (1906, p. 183) says
that ‘‘astronomical refraction is little influenced by the dimi-
nution of temperature at low altitudes, the effect of differences
of temperature reaching their maximum near the pressure-
height, and slowly diminishing for yet greater heights. We
must, therefore, for astronomical purposes, lay more stress on
the temperature at considerable heights than near the surface
of the earth.’’

Garfinkel (1944) suggested that ‘‘it can reasonably be
expected that the theory will be corroborated further when the
refraction data for great heights become more abundant and
more reliable.’’ Similarly, Woolard & Clemence (1966, pp. 85–
86) say that ‘‘with the accumulated meteorological data on the
upper atmosphere now available, theories of refraction may
be based on empirical density distributions . . . and analytical
developments that are theoretically valid at all zenith distances
may also be used.’’

Furthermore, O’Connell (1958, p. 21) says, ‘‘One point
emerges very clearly from our observations—the rim of the low
sun can be very strongly disturbed by scintillation even when
the distant horizon is extremely clear and sharply defined,
showing that the cause of the scintillation is not always in the
lower layers of the atmosphere.’’ (The classic example is shown
in his Plate 19, in which a ship on the horizon, 80 km away, is
sharply silhouetted in front of the highly distorted image of the
Sun.) He then quotes a passage from Wegener’s (1928) ency-
clopedia article, in which the cause of scintillation is attributed
to ‘‘the high and highest layers of the atmosphere.’’ On the next
page, O’Connell says, ‘‘our observations prove, I think con-
clusively, that strong scintillation can be observed near the
horizon which in no way depends on conditions in the lower
atmosphere.’’ In his follow-up article in Endeavour, O’Connell
(1961) concludes that ‘‘it is worth emphasizing that the ap-
pearance of the green flash, and of other phenomena referred
to here, is dependent on . . . conditions at great altitudes.’’ He
mentions investigations of ‘‘these very tenuous upper regions
of the air’’ by rockets and satellites and suggests that ‘‘studies
of such phenomena as the green flash may contribute useful
information’’ about them.

Other modern workers have also mentioned the importance
of the upper atmosphere for refraction near the horizon. For
example, Kolchinskii (1967, p. 14) noticed that refraction
tables computed by numerical integration for different realistic
model atmospheres differ much more at the horizon than
would be expected if the refraction were proportional to the
refractivity at the observer and concluded, ‘‘Thus, the dis-
persion between the refraction at the horizon, calculated by
[refractivity scaling] and obtained by numerical integration,
proves to be highly significant. It indicates that in this case the
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upper layers of the Earth’s atmosphere influence the value of
the refraction integral.’’

In a widely cited paper, Saastamoinen (1972a) argues that the
diurnally varying atmospheric boundary layer can be neglected,
saying that ‘‘since only a small contribution to these integrals
comes from the lower levels, it will be quite sufficient merely to
extend the constant temperature gradient of the free troposphere
down to the ground level, neglecting the small error thus in-
volved.’’ In the continuation of this work (Saastamoinen
1972b), he adds that ‘‘any significant variation of the tropo-
spheric contribution, whether of regional or seasonal origin,
is largely compensated by the stratosphere.’’ More recently,
Mikhailov (1975) has stated that ‘‘beyond 60� . . . the state of
the atmosphere at heights of 10 km and greater begins to exert
an increasing influence’’ on the refraction, and Yan (1996) has
stated that a tropopause height different from that used in the
standard model can ‘‘produce errors of astronomical refraction.’’

One could hardly ask for more definite statements than
those quoted above.

3.2. Proponents of the Lower Atmosphere

On the other hand, there are equally definite statements that
the lapse rate in the lower atmosphere is the important factor.
Perhaps the first astronomer to express such an opinion was
Bessel (1823), who attributed the dispersion of the observations
at low altitudes to ‘‘unknown irregularities in the lower layers
of the air’’ and pointed out that the repeated measurements of
thermal structure made by Zumstein on Monte Rosa gave
‘‘widely deviating results, and thus show that the lapse rate of
the atmosphere is no less uniform;—one can add that the direct
observations of the thermal gradient are always made in the
daytime, those of the refraction at night, and that the heating
of the ground surface by sunshine has apparently increased the
lapse rate.—In my view one must find the lapse rate directly
from the refraction observations . . . ; it seems probable that
refractions observed by day would give a greater lapse rate than
night observations.’’ He also declared that this was substanti-
ated by Argelander’s observations of sunsets, which gave
‘‘generally smaller refractions than those mentioned above,
based on the fixed stars.’’

Soon afterward, Atkinson (1830, 1831) attempted to show
‘‘that the fluctuations in the state of the atmosphere near the
surface of the earth are not only fully adequate to account for
the very great variations which have been observed in the
horizontal refraction, but even for still greater variations.’’ But
Atkinson died before completing his work.

A few years later, Henderson (1838) reported his observa-
tions of refraction near the horizon made at the Cape of Good
Hope, showing day-to-day variations of a few tens of seconds
near 85� Z.D., and variations exceeding a minute closer to the
horizon. He remarked that beyond 88�, ‘‘it is well known that
the astronomical refractions are extremely irregular, being af-
fected by the same causes which make the terrestrial refractions
so variable and uncertain.’’

Henderson did not say what these causes are; but in fact they
had already been well established. Gruber (1786) had first
demonstrated experimentally that mirages were produced by
heated surfaces. Woltman (1800) made careful observations of
mirages and terrestrial refraction and established that the
temperature difference between the air at eye level and the
surface below it was the decisive factor: ‘‘always, if the water
was about 2

�
Fahrenh. or more warmer than the air, a depres-

sion of the rays that extended over the water surface took place,
and (assuming that the objects were visible) an inferior mirage.

On the other hand, if the water was about 2� colder than the air,
raising of the rays took place, and never an inferior mirage.’’
Heinrich Wilhelm Brandes (1807) published a monograph on
mirages and refraction in which he tabulated thousands of
observations of terrestrial refraction, together with temperature
differences measured at different heights up to 161

2
feet (5 m)

above the ground. In a summary paper, Brandes (1810) stated
as his first result that ‘‘if one frequently observes the apparent
height of individual objects above the Earth, and simulta-
neously investigates the heat of the air each time at different
heights, one finds quite generally that the apparent height of
each object is the greater, the warmer the higher layers of the
air are in comparison with the lower ones.’’ In the same year,
J.-B. Biot (1810) published his own monograph on horizontal
refraction and mirages, in which the theory was worked out
in detail and extensive quantitative comparisons between mea-
sured altitudes and temperature gradients were used to confirm
it. Biot’s monograph is exceedingly thorough; it encompasses
refraction, dip of the horizon, superior as well as inferior
mirages, looming, etc. So the importance of temperature gra-
dients in the very lowest part of the atmosphere was already
well established early in the 19th century.
Although many review articles on mirages and refraction

were subsequently published, most of them appeared in the
meteorological or geodetic literature and may have been
overlooked by astronomers. However, in 1836 Biot published
another very extensive treatment of refraction in the Additions
a la Connaissance des Tems pour l’An 1839, which should
have made the astronomical world well aware of the subject. In
this, he emphasized how the local zenith angle rapidly departs
from 90� in the upper atmosphere, even for rays that are nearly
horizontal at the observer. This effect rapidly diminishes the
relative contribution of the upper layers.
Similar arguments were made by Fabritius (1878), who

pointed out that the refractive invariant along the ray, namely,
nR sin � = noRo sin z (in which � is the local zenith distance of
the ray at a distance R from the center of Earth, where the local
refractive index is n, and the corresponding terms on the right-
hand side refer to the observer’s position), ‘‘shows that the
incidence angle . . . will differ very appreciably from z as soon
as sin z is near unity.’’ Consequently, even at the observer’s
horizon, the local zenith distance of the ray at the height where
nR exceeds its value at the surface by only 1% is only about
82�, so that ‘‘one may draw the conclusion that the constitution
of the atmosphere in the highest layers would be without any
appreciable influence even on the horizontal refraction.’’
Likewise, in a detailed observational study of terrestrial

refraction, Heinrich Hartl (1881) concluded, ‘‘On the grounds
of purely empirical researches, influenced by no hypotheses, I
believe to be justified in stating: The temperature decrease
with height is the most important factor in the daily and yearly
periods of terrestrial refraction; the other meteorological
elements are of only secondary importance.’’ Inasmuch as the
terrestrial refraction is simply the contribution of the lowest
layers in the atmosphere to the astronomical refraction near
the horizon, the variations in astronomical refraction at low
altitudes must largely be due to these layers.
Fletcher (1952), in a fine review of low-altitude refraction,

stated explicitly that ‘‘at low angular altitudes the lowest layers
in the atmosphere, the lowest few kilometres, influence the
refraction much more than at higher altitudes; the temperature
gradient near the ground is known to vary systematically with
season, time of day, type of weather and so on, and also to vary
in a random or accidental manner.’’ He then devoted a whole
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two-page section to the ‘‘Influence of Temperature Gradient
near the Earth’s Surface,’’ with numerical examples, calling it
‘‘perhaps the chief systematic cause of variability of refraction
at very low altitudes.’’ Recently, van der Werf (2003) has found
similar results.

One could hardly ask for more definite statements than these.
But they are completely incompatible with the assertions cited
in the previous section. So whom should we believe, Ivory,
Newcomb, Garfinkel, Woolard & Clemence, and O’Connell—
all distinguished astronomers—or Bessel, Henderson, Biot,
et al.? It is remarkable that the conflict between their statements
has never been noticed, much less resolved.

4. RESOLVING THE DILEMMA

4.1. The Open Question

To begin with, I must point out that those who attribute the
variations in near-horizontal refraction to the temperature
gradient in the lower atmosphere have offered more quanti-
tative arguments than those who favor the upper atmosphere.
However, even these writers have not shown how much of the
lower atmosphere is important: is it the whole troposphere, or
only some restricted region near the surface? This part of the
question was left open, so that Mahan (1962), in reviewing the
whole subject of astronomical refraction, wrote that ‘‘the im-
portance of the stratosphere is . . . still an unsolved one.’’

A simple way to settle the issue would be to find the height
in the atmosphere that divides the total refraction at each given
zenith distance into two equal parts. This requires a method of
calculating refraction that preserves the contribution of each
elemental layer into which the atmospheric model is divided.
The method must be valid all the way to the horizon—and, as
we shall see, even beyond it.

4.2. The Method of Solution

What is needed is a detailed quantitative accounting of where
in the atmosphere the astronomical refraction near the horizon
comes from. In the days of analytical theories, this was not easy
to do; the definite integrals used often had infinite upper limits,
and breaking the integration within the atmosphere was not
easily done, not least because of the transformations of variable
required to make a solution possible at all. And a straightfor-
ward numerical integration of the untransformed expressions
was exceedingly laborious.

However, all this should have been changed by Biot’s 1836
memoir on astronomical refraction. In it, he introduced a simple
transformation that allowed him to calculate the refraction
for an arbitrary atmospheric model with only a 13-node quad-
rature. Unfortunately, Biot was too far ahead of his time: nu-
merical methods would not come into favor until the advent
of computers. His method was forgotten, to be rediscovered, a
century and a half later, by Auer & Standish (1979, 2000). It is
now the recommended method (Seidelmann 1992) for calcu-
lating refraction.

Unlike the traditional semiconvergent series approximations
introduced by Lambert (1759), the Biot-Auer-Standish (BAS)
transformation is exact: it merely changes the variable of in-
tegration to the local zenith distance at each point along the ray.
This removes the divergence of the integrand at the horizon
that is so troublesome in the standard form involving tan z.

It should be remembered that the BAS method fails when
the ray curvature approaches that of Earth. This means it is not
applicable to cases of extreme refraction, such as those that
involve ducting, or the Novaya Zemlya phenomenon. How-

ever, we can settle the question adequately without consider-
ing such cases.

4.3. A Few Details

The BAS method divides the atmosphere into layers and
calculates the contribution of each layer separately to the total
refraction, so we can just save the partial sums layer by layer
and compare them with the total. To determine the exact half-
contribution point, I have subdivided the original layers into
sublayers, each of which is smaller than 1/256 of the total
thickness of the original layer. This provides values at the in-
termediate tabulated points, so the midrefraction point can be
found by linear interpolation.

To calculate refraction at a dip d below the astronomical
horizon, determine the lowest point (‘‘H’’ in Fig. 1) on the ray
from the refractive invariant. The ray is symmetric about H.
As the refraction from O to H is the same as that from H to P,
twice the refraction from H to P is the refraction from O to P—
that is, the contribution to the required refraction from the air
below the observer. The contribution from the air above the
observer is simply the refraction calculated for an altitude of d
as seen from P, at the same height as the observer. The sum of
the refractions from the air above and below eye level then
gives the required result. This is equivalent to integrating the
horizontal refraction from H, but doubling the accumulated
refraction when the point P (at the observer’s height) is reached.

The program used is based on the one published by
Hohenkerk & Sinclair (1985), but with much tighter conver-
gence limits in the iterations, and error limits changed from
absolute (seconds of arc) to relative (fractional) tolerances of
1 part in 108. A more accurate formula for the refractivity of dry
air (Peck & Reeder 1972) is also used. The calculations here
have been done for a wavelength of 700 nm, which is appro-
priate for observations very near the horizon.

5. EXAMPLES

5.1. The Standard Atmosphere

The US Standard Atmosphere (Committee on Extensions to
the Standard Atmosphere 1976) is a widely used reference

Fig. 1.—Use of symmetry to economize refraction calculations below the
horizon. Solid arc EF represents Earth, with center at C. The observer is at O,
looking along the ray OHPS, which is horizontal at H, its lowest point. The
dashed arc is the horizontal surface through the observer; the dip of the ray at
the observer is d. Note the equality of the three angles marked d.
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model; it is very similar to the International Civil Aviation
Organization model atmosphere that preceded it, and even to
models used in the 19th century, because it has been known
for a long time that the mean lapse rate in the troposphere is
near 6 K km�1 (cf. Ivory 1823). For our purposes, the im-
portant values are the temperature and pressure at the surface,
and the tropospheric lapse rate; for the Standard Atmosphere,
these are 15

�
C, 1013.25 hPa, and 6.5 K km�1. This lapse

rate, which Newcomb (1906, p. 183) called ‘‘the general av-
erage, day and night, taking the whole year round,’’ extends
up to 9 km in the Standard Atmosphere, whose isothermal
stratosphere begins at 12 km.

As one would expect, the vertical distribution of the con-
tributions to the refraction is nearly the same for all zenith
distances less than 45� or so, where a plane-parallel model is
nearly correct. Half the refraction comes from below a height
of 6671 m at 30� Z.D.; 6666 m at 45�; and 6653 m at 60�. The
first and third quartiles turn out to be about 2.9 and 12.1 km,
respectively; the dashed line in Figure 2 shows the fraction of
the total below each height at 45� Z.D. The weak dependence
on zenith distance is not surprising.

The actual value is not very unexpected, either: as the ray
bending is proportional to the density gradient, the mid-
refraction point should correspond roughly to the place where
the density has half its value at the surface, and this is very
nearly true. A little more than one-quarter of the near-zenith
refraction comes from the stratosphere. Similar results were
obtained by Emden (1923).

However, the numbers are very different near the horizon.
At the horizon itself, half the refraction comes from below
2395 m height—a region that contributes less than a quarter of
the total refraction at small zenith distances. Three-fourths of
the total refraction at the horizon comes from the air below
6633 m height. That is, the region above this height contrib-
utes only a quarter of the refraction at the horizon, while it
contributed very nearly half of the total near the zenith. The
region above 12.1 km, which produces a fourth of the total
refraction near the zenith, contributes only 10% of the total at
the horizon (see the solid line in Fig. 2). These numbers
support Fabritius’s (1878) views. More remarkably, at the
horizon, a quarter of the total refraction comes from just the
lowest 545 m of air. The increased importance of the lower
atmosphere at the horizon is obvious.

The changes near the horizon are very rapid, as Figure 3
shows. Above 10� altitude, the refraction contributions are
little different from the values near the zenith. Nearly all the
change occurs below 5

�
altitude.

5.2. Elevation of the Eye

The values just given apply to an observer at sea level, but
no one ever observes from the very surface of the sea. Even
standing at the shoreline, a person of average height observes
from about 1.5 m above the sea, at which height the dip of the
horizon is over 20. For such an observer in the Standard At-
mosphere, half the refraction at the apparent horizon comes
from the bottom 2323 m, and 2.6% of the total refraction
comes from the 1.5 m of air below eye level.
It may seem surprising that the lowest 1.5 m of air—less than

0.02% of the whole atmosphere—could contribute 2.6% of the
total refraction at the apparent horizon. The explanation is that
the ray touching the apparent horizon has a very long curved
path in these 1.5 m of height: about 9.5 km, half on either side
of the horizon. The relative air mass at the horizon is about 38,
corresponding to a total path length equivalent to some 300 km
of air at sea-level density, so the path below 1.5 m height is
about 1/32 of the total. Thus, it should not be surprising that this
bottom layer contributes nearly 3% of the total refraction.
One-quarter of the refraction at the sea horizon comes from

below eye level for an observer 175 m above sea level, and half
the total comes from below eye level for an observer at 992 m. It
turns out that the percentage of refraction at the apparent ho-
rizon that is produced below eye level is nearly equal to the dip
of the horizon in minutes of arc, for the Standard Atmosphere
(see Fig. 4). For example, at the Vatican Observatory (450 m
above the sea), where O’Connell’s observations were made, the
dip of the sea horizon is 37A4, and 37.1% of the refraction at the
sea horizon comes from the air below the observatory.
Colton (1895a, 1895b) and Chappell (1933) observed sun-

sets at Lick Observatory, about 1290 m above sea level. About
55% of the refraction produced by the Standard Atmosphere at
the Lick sea horizon comes from the atmosphere below the
observatory. For the typical modern observer at a mountain
observatory near 2000 m elevation, over 63% of the astro-
nomical refraction at the sea horizon comes from below eye
level. At the Carlsberg Meridian Telescope on La Palma, at
2326 m, over 66% of the astronomical refraction at the sea

Fig. 2.—Fraction of the astronomical refraction that arises below different
heights in the US Standard Atmosphere, for an observer at sea level. Solid
line, horizontal refraction; dashed line, refraction at 45� Z.D.

Fig. 3.—Heights of the quartile contributions to astronomical refraction in
the US Standard Atmosphere as functions of altitude, for an observer at sea
level.
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horizon is due to the air below the telescope. Evidently, the
refraction at the visible horizon seen by astronomers at
mountain observatories comes mainly from the air beneath
their feet.

Figure 5 shows the effect of eye height for the lower two
quartiles of the refraction at the apparent horizon; the upper
quartile behaves similarly, but it cannot be shown clearly on
the same scale. As the observer’s height above sea level
increases, the region below the eye (in which the air path is
doubled, because of the part between the eye and the horizon)
also increases. As long as this region is below the height of the
given quartile, its double contribution serves to reduce the
quartile height as the eye height increases, so the curves ini-
tially slope downward. However, this effect diminishes with
increasing eye height, because the biggest contribution comes
from the lowest levels, where the ray is most nearly hori-
zontal. Consequently, the slope of the curve decreases as the
eye height increases.

When the height of the eye coincides with the quartile
height, the latter reaches a minimum. Thereafter, as the total
refraction at the apparent horizon increases with eye height, so
must the quartile height. So there is a discontinuity of slope at
the minimum of each curve.

6. EFFECTS OF THERMAL INVERSIONS

6.1. The Boundary Layer

Users of the Standard Atmosphere should recognize that
such models are extremely unrealistic: the real atmosphere is
never in such a state. This model averages out diurnal varia-
tions, which are particularly large over land. In the real at-
mosphere, daytime solar heating and nocturnal radiative
cooling occur mostly at the ground surface and gradually
propagate upward into the overlying air. Soon after sunrise a
convective boundary layer forms at the surface, gradually
growing thicker at the expense of the stable layer formed in
the previous night. Around sunset, radiative cooling of the
ground usually forms a thermal inversion, and the stable
boundary layer thickens during the night.

Thus there is never a time when the whole boundary layer
has the constant temperature gradient of the Standard Atmo-
sphere: some parts of the boundary layer are near the adiabatic
lapse rate, while others have an inverted lapse rate. Thermal

structure is always present in the lowest few hundred meters
of air. Because most astronomical observations are made at
night, under clear skies, a radiative thermal inversion is usu-
ally present at the surface.

Indeed, even Newcomb (1906, p. 183) recognized this fact,
and he prefaced his assertion that refraction is ‘‘little influ-
enced by the diminution of temperature at low altitudes’’ by
remarking that this decrease ‘‘is changed to an actual in-
crease’’—that is, a thermal inversion—during the night, so
that ‘‘were the rate of diminution near the surface of the earth
important, it would be necessary to suppose a very small rate
in the lowest kilometre of the air for the purpose of computing
the astronomical refraction for night observations.’’ As, in
fact, the lapse rate near the surface is important, the investi-
gation of a surface-based thermal inversion is necessary.

6.2. Models with Inversions

Nocturnal inversions in the boundary layer are quite varied,
with depths usually between 100 and 500 m, and increases in
potential temperature typically between 5 and 15 K (see chapter
12 of Stull 1988), though much stronger inversions sometimes
occur, especially in winter at high latitudes. As examples, I
shall consider inversions with a depth of 200 m and a deviation
from the Standard Atmosphere of 10 K.

One can imagine several different ways of adding a thermal
inversion to the Standard Atmosphere (see Fig. 6). The sim-
plest is to keep the standard model above the inversion and
simply cool the ground 10 K, as in model NBL1 in Figure 6.
However, it is then difficult to disentangle the effect of the
inversion from the change in refractivity at the observer.

But if we keep the surface temperature fixed, how should the
atmosphere above the inversion be treated? One could raise all
the temperatures above 200 m by the same amount, but the
model then differs from the standard one everywhere but at the
ground; then the problem is to distinguish between the effect of
the inversion and the general heating of the atmosphere.

An intermediate approach is to bring the profile back to the
standard one at some height above the inversion. The models
NBL2–NBL7 return to the standard profile at heights of 1, 2,
. . . , 6 km, respectively.

Figure 7 shows the resulting refractions near the horizon.
Except for model NBL1, in which the surface temperature was

Fig. 4.—Fraction of refraction at the apparent horizon produced by the air
below eye level, as a function of dip of the horizon, for the US Standard
Atmosphere.

Fig. 5.—Heights of the lower two quartile contributions to refraction at the
visible horizon in the US Standard Atmosphere, as functions of height of the
observer’s eye.
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lowered, all the models have the same temperature and pres-
sure at the observer, and they all produce nearly the same
refraction as the Standard Atmosphere down to about 2� above
the horizon. The region within 2� of the horizon that is af-
fected by the nocturnal inversion depends on the thickness of
the inversion layer; the fact that Ivory (1823), Henderson
(1838), Strand (1952), and many other authors mention that
the variations in low-altitude refraction are most pronounced
in a zone of this width just reflects the fact that the nocturnal
inversion is typically a few hundred meters thick.

As one would expect, the NBL1 refraction is about 3% larger
than the other models, simply because of the corresponding
increase in refractivity at the observer. However, apart from this
difference in scaling, all the models with inversions behave
very similarly: they all produce a much more rapid increase in
refraction at the horizon than the Standard Atmosphere, and the
differences among them are small compared with their common
deviation from the standard refraction. Evidently the large in-
crease in refraction at the horizon is the direct result of the
inversion at the base of the nocturnal boundary layer. (Evi-
dently, too, the effect of the inversion is confined to so small a
zone of sky near the horizon that it would never be noticed in
ordinary astrometric observations, which rarely extend beyond
80� Z.D.) The moderate nocturnal inversion increases the
horizontal refraction by more than 100.

The great similarity of the refraction curves for the models
with inversions is a consequence of Biot’s (1836) theorem that
the altitude derivative of the refraction at the horizon depends
on the temperature gradient at the observer. All the inversion
models in Figure 6 have the same lapse rate at the surface, so
of course their curves in Figure 7 are parallel at the horizon.
Biot calls the slopes of these curves the ‘‘coefficient of vari-
ation’’ and says, ‘‘But just as, near the zenith, the coefficient of
variation depends only on the refractive power observable in
the layer where the observer is found, its value at the horizon
depends at once on this power and on its immediate decrease
as one rises above the observer, so that the action of distant
layers has absolutely no effect.’’

Although the models NBL2 to NBL7 differ considerably
above the inversion (cf. Fig. 6), their differences above 200 m
produce relatively small differences in refraction. And as the
jog in the profiles of Figure 6 rises from 1 to 6 km, its incre-

mental effect on the refraction curve in Figure 7 rapidly
diminishes. In fact, models NBL4–NBL7 are indistinguishable
at the scale of Figure 7; their differences are only a few sec-
onds of arc, even at the horizon. This shows how much more
important the lowest layers of the atmosphere are for near-
horizontal refraction than layers even a few kilometers higher
up. (Similar conclusions were reached by van der Werf [2003],
using a different family of thermal profiles.)
These facts completely contradict Newcomb’s assertion that

the sensitivity to thermal gradients increases from the ground
up to about the pressure scale height. Likewise, O’Connell’s
assertions that the upper atmosphere is important are clearly
wrong. Conversely, this simple example shows how strongly
the refraction near the horizon can be affected by thermal
structure in the lowest few hundred meters of air, while it is
remarkably insensitive to the higher layers. To the evidence
presented here may be added the fact (Young et al. 1997) that
still weaker thermal inversions below eye level can produce
extreme distortions of the low Sun, and even inverted (i.e.,
mirage-like) images.

6.3. Depth of the Inversion

Figures 8 and 9 show the effect of changing the inversion
depth. In the models NBL8 and NBL9, the inversion depth is
400 m instead of the 200 m considered above. NBL9 has the
same lapse rate as NBL7, so its double-thickness inversion
makes most of the lower troposphere 20 K warmer than
the standard model, instead of 10 K warmer. Figure 8 shows the
profiles, and Figure 9 shows the resulting refractions near the
horizon.
As we should expect from Biot’s theorem, models NBL7

and NBL9, which have the same lapse rate at the observer,
also have the same refraction gradient at the horizon. But
although the inversion is twice as thick in NBL9, the hori-
zontal refraction is only a little larger than for NBL7. That is,
the second 200 m of inversion layer, from 200 to 400 m
elevation, has produced very much less effect than the first
200 m above the observer.
The other striking feature of Figure 9 is that although NBL7

and NBL8 produce appreciably different refractions at the
horizon, they are almost identical a degree or more above the

Fig. 6.—Atmosphere models with a 200 m deep thermal inversion of
amplitude 10�C added to the Standard Atmosphere in various ways (see text
for explanation).

Fig. 7.—Refraction in the lowest 3�200 above the horizon, for the models of
Fig. 6, and an observer at sea level. At the scale of this figure, the curves for
models NBL4–NBL6 are indistinguishable from the NBL7 curve and so are
omitted; even the NBL3 curve is barely distinguishable from that for NBL7.
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horizon. That is, the bottom 200 m of air has affected only
about the lowest degree of sky above the horizon.

6.4. Elevated Inversions

The similarity of the refractions for models with the same
lapse rate at the observer but different thicknesses (NBL7 and
NBL9), except near the horizon, suggests that the effects of
elevated inversions will be small. A numerical experiment
with a 10 K inversion between 200 and 400 m bears this out:
except very near the horizon, it is essentially the same as the
results shown for NBL7 and NBL8 in Figure 9.

However, as would be expected from Biot’s theorem, it is
closer to the standard case near the horizon, differing from it
by 10 at 450 altitude, and 2A83 at the astronomical horizon.
Thus it would lie just above the solid line in Figure 9 and join
NBL7 and NBL8 near their confluence about a degree above
the horizon. To avoid cluttering the figure, it is not shown.

7. THE STRATOSPHERE

7.1. Changing the Stratosphere

As several authors have suggested that the stratosphere plays
an important part, it is useful to compare models having
modified stratospheres with the Standard Atmosphere. For
example, consider the warmer stratosphere shown in Figure 10,
where the stratospheric minimum has been increased by 10 K.
(To do this without changing the lower atmosphere, it is nec-
essary to warm the entire region from 9 to 30 km, though only
the heights from 12 to 20 km are a full 10 K warmer than in the
standard model.)

As might have been expected from the theorems of Oriani
and Biot, fixing the density and lapse rate in the lower atmo-
sphere leaves very little room for variations in the refraction
due to the upper atmosphere. The warm-stratosphere model
increases the refraction by a milliarcsecond at 73�.5 Z.D., by a
hundredth of a second at 80�.2, by a tenth of a second at 84�470,
and by a whole second of arc at 88

�
540. The increase at the

horizon is 1B2. These small changes are probably all below the
random errors of measurements at the corresponding altitudes
and would be exceedingly difficult to detect.

A model constructed in the same way with a 10 K colder
stratosphere, maintaining the standard lapse rates on either
side of the minimum, changes a much smaller interval (from
12 to 19 km) and produces even smaller changes in refraction.

7.2. Removing the Stratosphere

As an extreme example of the unimportance of the strato-
sphere, so long as the conditions (including the lapse rate) at the
observer are held fixed, consider a model with no stratosphere
at all: we keep the lower layers identical to the Standard At-
mosphere but hold the lapse rate fixed at 6.5 K km�1. This
model terminates at 44.33 km height. Even at the astronomical
horizon, its refraction differs from that of the Standard Atmo-
sphere by less than 2B3.

For practical purposes, variations in stratospheric structure
produce negligible variations in refraction.

7.3. Explanation

It seems paradoxical that although the stratosphere contrib-
utes about a quarter of the refraction near the zenith, major
changes in it have little effect on refraction. Even at the horizon,

Fig. 8.—Models comparing three different inversions. NBL7 and NBL8
differ only below 400 m; NBL7 has twice the surface lapse rate, but its inversion
is only half as deep. NBL9 has the same surface lapse rate as NBL7, but
extending up to 400 m instead of 200 m. The corner is at 400 m in both NBL8
and NBL9. All models coincide with the Standard Atmosphere above 6 km.

Fig. 9.—Refraction in the lowest 3�200 above the horizon, for the models of
Fig. 8 and an observer at sea level. Note that zero is off-scale on the ordinate
axis. NBL7 and the Standard Atmosphere are also shown in Fig. 7.

Fig. 10.—Temperature profile for a modified model atmosphere with 10 K
warmer stratosphere.
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it contributes more than an eighth of the whole refraction (see
Fig. 2). So why is the low-altitude refraction so insensitive to
the stratosphere’s structure—or even its existence? The answer
is basically that given by Biot (1836): circumstances conspire
to make Oriani’s result apply to all rays that reach the sur-
face of Earth from the upper atmosphere, so the structure of
the stratosphere is unimportant.

Consider first the angle at which the sea-level horizon ray
meets the tropopause. The refractive invariant nR sin � is sim-
ply nR where the ray is horizontal—that is, at sea level. If
we assume the tropopause height is 10 km, Rtrop = 1.00157Ro.
The density at the tropopause is a third, or less, of the density
at sea level, so ntrop = 1.0001. As no = 1.0003, we see that
sin � = 0.9986, corresponding very nearly to cos � = 0.053, or
� = 87

�
. So the horizon ray has an altitude of about 3

�
at the

tropopause. (This is the dip of the horizon as seen from a height
of 10 km.)

But, as Figures 7 and 9 show, the refraction above 3� alti-
tude is practically unaffected by structure above the observer,
even at sea level. At 10 km, ray curvature is smaller than at sea
level, so the effect of overlying structure above 3� altitude at
the tropopause (corresponding to the horizon ray at sea level)
must be still less. Any appreciable effects of stratospheric
structure must be confined to rays closer to the tropopause
observer’s horizon than the sea-level horizon ray; such rays
cannot reach sea level.

8. EXPLANATIONS OF ERRORS

As the true state of affairs has been stated repeatedly by
numerous authors, from Biot (1836) onward, without stem-
ming the flow of misinformation in the astronomical literature,
merely asserting the truth once again may not suffice to eradi-
cate the errors. Perhaps demonstrating the fallacies of the in-
correct arguments will help.

Garfinkel (1944) and Woolard & Clemence (1966) are so
brief about their claims that they offer no arguments to refute.
But Newcomb (1906) and O’Connell (1958, 1961) do offer
some substance, and Ivory (1823) makes remarks on both sides
of the issue. The supposed connection made by Kolchinskii
(1967) is nonsense, but the underlying error has been made by
many others. Each of these last four authors deserves separate
discussion.

8.1. Ivory

In addition to the remark already quoted, Ivory (1823) has a
similarly wrong, or at least misleading, comment a few pages
later (p. 436): ‘‘The refractions are . . . affected by circum-
stances of which the observer has no intimation, and which
cannot enter into any theory. The real causes of such anomalies
is [sic] undoubtedly the irregular changes that take place in the
remote parts of the atmosphere, which are not indicated by the
barometer or the thermometer.’’

Yet, elsewhere he seems aware that the responsible parts are
not so remote as these remarks would suggest. In particular,
on page 424 he discusses the lapse rate (or rather, its recip-
rocal) and says that ‘‘this quantity is subject to great irregu-
larities, which are not well understood. It is found that the
refractions near the horizon are liable to variations equally
irregular and unknown. There can be little doubt that both
these effects are produced by the same causes, which disturb
the gradation of heat, and the arrangement of the strata of air
near the earth’s surface.’’ Here he clearly is correct, though
somewhat lacking in conviction—especially compared with

the ‘‘undoubtedly’’ he attaches to the ‘‘remote parts of the
atmosphere’’ twice.
On page 472, Ivory again makes a stab in the right direc-

tion, but even more feebly: ‘‘With regard to altitudes less than
2�, it is not clear that the astronomical refractions do not
participate of the extreme irregularity that attends the terres-
trial refractions’’—thus agreeing with Henderson’s (1838)
remark, but only by way of a double negative.
On page 456, Ivory discusses a variety of models, and finds

that ‘‘although the refractions near the zenith are affected in a
degree hardly perceptible by the peculiar constitution of the
atmosphere,’’—he seems not to have read Oriani (1787a,
1787b)—‘‘yet, near the horizon, they depend entirely on the
same arrangement of the strata of air indicated by terrestrial
experiments.’’ That is, the low-altitude refraction is satisfied
only by atmospheric models that reproduce the observed lapse
rate in the lower atmosphere, which Ivory takes to be 1�C in
90 or 95 English fathoms, corresponding to about 5.8–6.1 K
km�1 in today’s units. But then he immediately blames ‘‘the
causes of the irregularities’’ on ‘‘the remote parts of the at-
mosphere’’ once again. Having had the correct explanation
within his grasp, he let it escape.

8.2. Newcomb

The statements from Newcomb (1906) quoted above follow
a comment that they are justified ‘‘for reasons which will be
better understood when the general theory is developed,’’ but
as he never explicitly returns to the matter, it is not obvious
what he had in mind. However, as Newcomb specifically
excludes ‘‘an investigation of refraction near the horizon’’
from consideration (p. 223), he must have been thinking of the
refraction in the part of the sky where astronomical observa-
tions are usually made. And, as his ‘‘General Investigation’’
section (p. 203) derives only the standard series expansion in
powers of tan z or sec z—and as, by Oriani’s theorem, only
the fifth-power and higher terms involve the detailed structure
of the atmosphere—it must be these high-order terms that
Newcomb had in mind.
To understand Newcomb’s thinking, we must recall how

this series expansion, originally due to Lambert (1759), is
developed. Newcomb writes the refraction as

R ¼ a tan z

Z 1

0

(1þ 2u sec2z)�1=2dw ð1Þ

(Newcomb’s eq. [15a] on p. 208), where w is a dimensionless
scaled density, z is the apparent zenith distance at the observer,
and u is an unpleasant function that accounts for the difference
of the ray curvature and Earth’s curvature at each point along
the ray. As these curvatures are both small, u is generally less
than 0.01. So as long as sec2 z < 50, 2u sec2 z < 1 and the
square root can be expanded by the binomial theorem in a
series in powers of sec z. Then, reversing the order of sum-
mation and integration, so that the series can be integrated
term by term, gives

R ¼ a tan z (1� m1 sec
2zþ m2 sec

4z� � � � ): ð2Þ

Each coefficient mn is a definite integral involving the
function u; apart from a numerical factor, this coefficient is
essentially the (n�1)th moment of the density as a function of
height. The signs alternate because of the �1

2
exponent in the

original refraction integrand. The leading term is just 1; the
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coefficient m1 of the next term involves the zeroth-order mo-
ment of the density distribution, which is simply the height of
the homogeneous atmosphere; and only the higher order terms
involve details of the density distribution. (The fact that m1

depends only on the density of air at the observer is essentially
Oriani’s theorem.) Newcomb apparently had in mind the de-
pendence of m2 on the first moment of the density when he
wrote his remark about the pressure height.

Newcomb says that the whole series is only convergent so
long as sec z is less than about 7, corresponding to z = 82�.
However, the convergence is actually slower than Newcomb
thought: his value of 0.0000014 for m2 calculated from Ivory’s
hypothesis is wrong. It should be 0.0000036, nearly 2.6 times
larger than Newcomb’s value. In Newcomb’s development
of Ivory’s model, m2 = 18�2/7 � 24�� /11 + �2/2, where � =
0.00130 is the ratio of the height of the uniform atmosphere to
the radius of Earth and � = 0.000283 is essentially the refrac-
tivity of air for standard conditions. If the numerical coefficients
18/7 and 24/11 of the first two terms are replaced by unity,
Newcomb’s value is reproduced exactly. It appears that he
simply lost those coefficients in evaluating m2—that is, he used
just �2 instead of the whole �2 term, and similarly for ��.

Indeed, the convergence is even worse than this, as is more
obvious in the isothermal model developed in Newcomb’s
x 115 (pp. 214–215). In this case, Newcomb’s equation (31)
shows that the leading term of mn is n!�

n, a sequence that must
ultimately diverge, no matter how small � is; worse yet, there
is an additional factor (denoted by Newcomb on p. 211 as [i],
for the ith term) that also grows in a factorial manner. In short,
the series as written is only semiconvergent and must ulti-
mately diverge. (This problem is discussed by Ivory [1823] on
p. 467 of his paper.) This shows the danger of trying to infer
the behavior of the whole refraction from that of the individual
terms in this series.

Still, one might explain the height dependence of the re-
fraction in terms of the series expansion. Because successive
terms involve higher moments of the density distribution,
higher order terms involve structure higher in the atmosphere.
(This fact is often concealed by the numerous transformations
of variable introduced in developing and integrating the series
expansion; it is most evident in the treatment by Saastamoinen
[1972a].) Then the alternation of signs in the series means that
each term reduces the contribution to refraction from the upper
part of the region emphasized by the previous term. So as sec z
increases, the increasing relative size of the higher order terms
progressively reduces the importance of the upper atmosphere,
and the main source of the refraction steadily moves downward
in the atmosphere. However, Figure 3 shows that the relative
contribution of different heights is practically the same for the
whole region where the series expansion is useful; the really
interesting region, where the lower atmosphere dominates the
refraction, is beyond the reach of this approach.

A more direct explanation would be to consider the refrac-
tion integrand in its original form, (d�/�) tan �, where � is the
refractive index, in Newcomb’s notation. The refractive in-
variant makes tan � largest at the bottom of the atmosphere—
this is essentially Fabritius’s (1878) argument—and of course
the refractivity gradient is largest there too. Again we see that
the refraction comes mainly from the lowest layers, and that
Newcomb was confused.

Considering that the works of Bessel (1823), Biot (1836),
Fabritius (1878), von Oppolzer (1901), and others that ex-
plained the matter clearly were already available, Newcomb’s
widely quoted remark that ‘‘there is, perhaps, no branch of

practical astronomy on which so much has been written as on
this and which is still in so unsatisfactory a state’’ seems to refer
more to his own limited understanding than to the actual state
of the subject. Perhaps he was misled by Bruhns (1861),
who overlooks Ivory’s warning that the series is only semi-
convergent, fails to emphasize the importance of Oriani’s
theorem, and dismisses Biot’s important work as merely a
‘‘mechanical quadrature.’’ (Mahan [1962] seems to have been
similarly misled by Bruhns.)

8.3. O’Connell

O’Connell’s (1958, 1961) argument is based on the obser-
vation that terrestrial objects appear at the horizon undistorted
while silhouetted against the distorted image of the Sun. From
this observation, he draws the erroneous conclusion that the
distortion must arise in air well beyond the undistorted
objects, that is, in the upper atmosphere.

The situation can be correctly understood by applying the
method used by Wegener (1918). Suppose we divide the at-
mosphere into two parts, one above eye level and one below it.
The upper part contributes most of the refraction, but its con-
tribution near the horizon is nearly constant and hence cannot
account for the complex fine structure observed in the setting
Sun. The lower part is primarily responsible for the phenomena
seen by O’Connell within 370 of the visible horizon, because
the dip of the horizon as seen from the 450 m height of the
Vatican Observatory is 370 for the Standard Atmosphere.

Now consider this lower part as a refractive optical element.
The horizon ray has its lowest point at the visible horizon; rays
a little above the visible horizon also have their minimum
heights near the horizon. But, in a spherically stratified at-
mosphere, each ray is symmetric about its lowest point. So if
we regard this lower part as a thick lens, its principal planes
must also be symmetrically placed before and behind the
horizon. Objects at the horizon are therefore situated between
the principal planes of this atmospheric lens.

As the height of a ray at one principal plane is also the
height of the ray at the other, it follows that the ray heights of
objects near the horizon are practically unaffected by the at-
mospheric structure there; indeed, this should have been ob-
vious from the very fact that the rays are nearly horizontal in
this region. So ships at the horizon appear nearly undistorted.
But, as this is the region in which rapid changes in ray
directions occur, it is also the region responsible for the dis-
torted images of objects optically at infinity (e.g., the Sun).

That O’Connell’s error could stand unchallenged for 45
years shows a great ignorance of optics among both astron-
omers and meteorologists. T. S. Jacobsen (1959), reviewing
O’Connell’s book in PASP, declared the ‘‘scintillation’’ evi-
dence ‘‘complete enough to show separately results for the sea
horizon and for the solar limb, thus indicating whether the
disturbances are relatively near or far away’’; the reviewer for
the Quarterly Journal of the Royal Meteorological Society
(Oddie 1961) thought ‘‘that the distortion is mostly due to
refractions in the upper air is demonstrated’’ by the famous
ship silhouette.

For readers who do not understand thick lenses, I can only
offer the example of the distorting glass often used in shower-
stall doors and bathroom windows: you can read a newspaper
through it if the paper is in contact with the glass, but objects
farther behind the distorting medium are unrecognizable. The
lower atmosphere acts in a similar fashion.

Another way to understand low-Sun distortions is to regard
them as mirages. As Biot (1810) proves in his monograph, a
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mirage (an inverted image) can only occur if rays from the
upper and lower portions of the miraged object cross between
the eye and the object, so that the image of the upper part
of the object is seen below the image of the lower part.
The refractive invariant requires that rays intersecting at the
observer’s eye must diverge above the observer, so celestial
mirages require the rays to cross somewhere below eye level,
and the rays must be horizontal somewhere in this region. As
the horizontal part of a ray is near the apparent horizon, only
objects beyond the horizon can be seen miraged, in a hori-
zontally stratified atmosphere. The miraging increases with
distance beyond the horizon, so the most distant objects (e.g.,
the Sun) suffer the greatest distortions.

O’Connell’s error is compounded by inappropriately ap-
plying the term ‘‘scintillation’’ to the image distortions. Taken
properly, scintillation refers to rapid fluctuations of stellar ir-
radiance produced by turbulence. And, as Wegener (1928) says
in his encyclopedia article cited by O’Connell (1958), scintil-
lation is produced mostly by the upper atmosphere. But what
O’Connell calls ‘‘scintillation’’ is just complicated refraction
due to the horizontally stratified atmosphere, not turbulence.
Indeed, as Stanley P. Wyatt (1959) commented on the photo-
graphs in O’Connell’s book, ‘‘Perhaps the most impressive
feature of these weird shapes is their symmetry around a ver-
tical axis, indicating that small-scale stratification in the at-
mosphere occurs in essentially horizontal layers.’’ The layers
below eye level produce the most striking effects, and the 450m
height of the Vatican Observatory allowed room for a multitude
of thermal inversions below it, each producing a characteristic
refraction feature of the mock-mirage type (Young et al. 1997).

8.4. Kolchinskii

The suggestion by Kolchinskii (1967), that the lack of pro-
portionality between refraction and refractivity near the horizon
has something to do with the upper atmosphere, is a complete
non sequitur. Approximate proportionality holds near the ze-
nith, where the small-angle approximation to the sines in Snel’s
law is good. Near the horizon, the lack of proportionality is due
to the nonlinearity of the sine function—or rather, its inverse—
as is easily seen from the exact formula for the plane-parallel
atmosphere:

r ¼ arcsin (n sin z)� z: ð3Þ

In this model the refraction is independent of the structure of
the atmosphere; yet, at 88� Z.D. the refraction for n = 1.00027
is only 0.8826 as large as that for n = 1.00030, although the
refractivity ratio is exactly 0.9000. Clearly, the failure of
proportionality is due to the nonlinearity of Snel’s law, not to
atmospheric structure. The same effect applies in the real,
curved atmosphere, though it is not so easily demonstrated.

However, the underlying error, which is to suppose that
refraction near the horizon should be proportional to atmo-
spheric refractivity at the observer, has been committed re-
peatedly in the astronomical literature—especially in the part
of it dealing with green flashes. An incomplete list of exam-
ples includes Ranyard (1889), Henry (1891), Bauschinger
(1896), Whitmell (1897), Julius (1901), Rambaut (1906),
Braak (1915), Guillaume (1919), the younger Lord Rayleigh
(1930), and Hoppe (1941). Apparently (Ivory 1823), this er-
roneous assumption goes back at least to the tables published
by the French Board of Longitude in 1806. That it is incorrect
was pointed out by Brinkley (1818), as well as by Ivory

(1823), but by the end of the 19th century their warnings had
been forgotten.

9. UNDERSTANDING REFRACTION

Obviously, the standard treatments of refraction have not
clarified its physics enough to prevent people such as Ivory,
Newcomb, and O’Connell from falling into serious errors.
Most discussions have focused on the details needed to con-
struct refraction tables: atmospheric models, series expansions,
and the evaluation of integrals. These details have distracted
attention from the basic principles needed to understand the
refraction problem.
Astronomical treatments emphasize the part of the sky where

positional astronomy is usually done. This is the region where
Oriani’s theorem applies, so atmospheric structure is of minor
importance. On the other hand, low-altitude refraction depends
mainly on the lapse rate near the observer—compare Biot’s
theorem—with a weaker dependence on the rest of the lower
troposphere. This zone has been largely neglected in theoretical
discussions of astronomical refraction. The difference between
these two domains was pointed out by Kurzyńska (1987), who
noted the transition near 85

�
Z.D. but did not explain it.

The basic difference between the two regions is evident if
we write the refraction integral as

r ¼
Z no

1

tan �
dn

n
: ð4Þ

As no differs from 1 by less than 0.0003, the n in the de-
nominator is hardly important; the interesting effects all come
from tan �. Let us consider some particular cases.

9.1. Small Zenith Distances

Near the zenith, tan � is nearly constant in the whole atmo-
sphere, and nearly equal to tan z, where z is the observed zenith
distance. Figure 11 shows the integrand of equation (4) for
several small zenith distances. To a good first approximation, a
mean value of tan � can be factored out of the integral. Also,
because of the tiny range of n, we can replace the n in the
denominator by a mean value of n—say, (no + 1)/2—and take it

Fig. 11.—Integrand of eq. (4) for zenith distances of 30� to 60�. The
observer is at the right side of the figure; the top of the atmosphere (where
n = 1) is at the left. The calculation is for the Standard Atmosphere; the curves
end at 120 km height.
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outside the integral. This leaves only dn in the integrand, so the
integral evaluates to no � 1.

If Earth were flat, the mean value of tan � would be slightly
greater than tan z. However, in a curved atmosphere, the mean
value is smaller. The weighting by dn is equivalent to weighting
by atmospheric density: � / n�1 means that d� / dn. So a
good mean value of tan � is the value at the density-weighted
height, which is the height of the homogeneous atmosphere, h.
From elementary trigonometry, this is R/(R + h) times tan z at
the observer. Then the near-zenith approximation becomes

r ¼ R

Rþ h

2(no � 1)

no þ 1
tan zo ð5Þ

or

r ¼ 2

1þ h=R

no � 1

no þ 1
tan zo: ð6Þ

As is evident from Figure 11, the slight decrease of tan � with
height in the atmosphere produces a slight slope in the inte-
grand, and a slight rounding of the corner at the top of the
atmosphere. These small effects are allowed for, to first order,
by the second term in the traditional series expansion; Oriani’s
theorem shows that they are independent of atmospheric
structure. This independence corresponds to the lack of any
visible feature in the figure at the height of the tropopause,
where n is about 1.00008.

9.2. Oriani

Oriani’s theorem is due to the combined effects of thinness of
the atmosphere and smallness of the refractivity. The thinness
makes tan � nearly constant through the atmosphere out to
considerable zenith distances, which accounts for the flatness
of the integrand plots in Figure 11. Well away from the zenith,
where the simple tangent approximation of equation (6) is not
sufficient, the small refractivity makes the ray path nearly in-
dependent of atmospheric structure. This explains why the
tropopause is invisible, even at 60

�
Z.D.

If we could set n to unity in the refractive invariant, it would
reduce to R sin � = const. Then sin � (and hence tan �) would
be a function of R alone, independent of atmospheric structure.
But if n were 1, the ray would be straight—a close approxi-
mation, except near the horizon. Then the local zenith distance

� would depend only on height, and not on the density distri-
bution of the atmosphere.

We could then treat the refraction as a perturbation from this
straight unrefracted ray. The (small) bending of the ray would
depend only on the integrated change in n—which is propor-
tional to the integrated change in density—along the ray. This is
the physical basis of Oriani’s result.

9.3. Larger Zenith Distances

Between 80� and 85� Z.D., the integrand develops appre-
ciable slope (see Fig. 12), and Oriani’s approximation breaks
down. The range of � in the atmosphere is large enough to
produce a general slope, and a markedly rounded corner at the
top of the atmosphere. The visibility of the tropopause as a
change in slope near n = 1.00008 shows that atmospheric
structure affects the refraction; ray curvature modifies the local
value of tan � appreciably, However, as the integrand is still
only a little larger near the ground than in the stratosphere,
refraction variations up to 80� or 85� Z.D. depend primarily on
the average tropospheric lapse rate, if we change the atmo-
spheric model.

This zone of zenith distance is where the traditional series
expansion starts to fail. If the series converges well enough to
be useful, its structure-dependent terms must be much smaller
than the first two, which are structure independent. Therefore,
in the whole region where the series expansion can be used,
the refraction must be nearly independent of atmospheric
structure. Only where the series expansion breaks down can
the structure become important—that is, within a few degrees
of the horizon. Thus the series-expansion approach is useless
for understanding refraction at low altitudes.

The increasing slope of the integrand with zenith distance in
Figure 12 shows the increasing importance of the lower at-
mosphere in this region. If anyone had plotted this function,
the predominance of the lower atmosphere at lower altitudes
would have been obvious, and the errors discussed above
could have been avoided. But excessive emphasis on series
expansions has apparently obscured the physics of refraction.

9.4. Horizon Region

Finally, Figure 13 shows the behavior of the integrand
within 5

�
of the horizon. The convergence of the curves to-

ward the left side reflects the near-constancy of the local ze-
nith distance at the top of the atmosphere, as pointed out by

Fig. 12.—Integrand of eq. (4) for zenith distances of 70� to 85�. Cf. Fig. 11.
Fig. 13.—Integrand of eq. (4) for zenith distances of 85� to 89�. Cf. Fig. 11.
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Biot (1836) and Fabritius (1878). On the right side, tan �
diverges at the observer’s horizon, where transformation of the
refraction integral to the BAS form is required. The lowest
layers, where ray curvature is very important, evidently
dominate near the horizon.

As ray curvature depends on the lapse rate in the boundary
layer, which varies with the weather, it is hopeless to pre-
dict refraction accurately close to the horizon; it is simply
too variable. And it is even more hopeless to try to predict
refraction here from the air density at the observer, as the
variations in refraction due to varying density gradients far
exceed those due to varying local density. Likewise, standard
tables are useless near the horizon, except to check numerical
integrations for accuracy.

Refraction near the horizon depends primarily on boundary-
layer structure. It is practically uncoupled from the refraction
between 70� and 80� Z.D., because the boundary layer that
dominates refraction below 5� altitude contributes relatively
little to the refraction integral above 10

�
, where atmospheric

layers are nearly equally weighted by density.
Because astronomical observations are rarely made so near

the horizon, it is useful to ignore this zone and consider a
simple model in which the ray can be approximated by a
straight line.

9.5. Cassini

For example, consider the homogeneous-atmosphere model,
used by Cassini (1662). As Ivory (1823, p. 410) says, ‘‘Perhaps
it is owing to its great simplicity, that the method of Cassini
seems not to have met from astronomers with the attention it
deserves.’’ Ivory’s comment remains true today; the only
textbook I know that even gives Cassini’s formula is that of
Alekseev et al. (1983, p. 58), although it is well known that
Cassini’s model provides an easy way (cf. Ball 1915, pp. 125–
127) to derive the first two terms in the series expansion. But
suppose we adopt his model exactly, instead of making such
approximations.

Figure 14 shows Cassini’s model. The homogeneous at-
mosphere has a refractive index n and height h. The ray whose
apparent zenith distance at the observer is z meets the top of
the atmosphere at angle of incidence �. In the triangle POC,
the sine of the angle at O is the same as the sine of its sup-
plement, which is the observed zenith distance z. Then the law
of sines gives

sin �

R
¼ sin z

Rþ h
ð7Þ

(where just R is now used for the radius of Earth); hence,

sin � ¼ R sin z

Rþ h
: ð8Þ

The law of refraction at P is

n sin � ¼ sin �; ð9Þ

but the angle � = � + r, where r is the refraction, so

r ¼ � � � ¼ arcsin

�
nR sin z

Rþ h

�
� arcsin

�
R sin z

Rþ h

�
: ð10Þ

Note that this result is exact; no approximations have been
made.

Cassini adjusted the height h to reproduce the measured
horizontal refraction, but as his model has an unrealistic
density gradient (namely, zero) at the surface, we know from
Biot’s theorem that it must give unrealistic refractions at low
altitudes. So Cassini’s table distributed the large error at the
horizon over the whole sky and was unreliable everywhere;
perhaps this is why his model fell into such neglect. For nu-
merical calculations, one should use the actual value of h de-
rived from the surface pressure and density and forget about
the horizon region. Doing this gives excellent values near the
zenith, where the surface gradient is unimportant. However,
Cassini’s model then gives a horizontal refraction that is only
60% as large as that in the standard model.

10. COMPARISON OF MODELS

Figure 15 shows the differences between the refraction in
the Standard Atmosphere, integrated numerically to high ac-
curacy; the exact Cassini model; and refractions calculated by
Stone’s ‘‘accurate method’’ (Stone 1996), which is a truncated
series expansion taken from the textbook by Green (1985).
Refractions for the model NBL7 with a rather well-developed
nocturnal inversion, and for isothermal and adiabatic atmo-
spheres, are also shown for comparison.
Remarkably, Cassini’s physically unrealistic model is more

accurate than Stone’s ‘‘accurate method’’ at all zenith dis-
tances. Why? Because Cassini’s homogeneous model is still an
atmosphere in hydrostatic equilibrium, while the truncated
series does not correspond to even this minimal physical con-
dition. However, the lapse rate required to offset the effect of
decreasing pressure with height is some 34 K km�1 (Wegener
1918), more than 3 times the adiabatic lapse rate, so Cassini’s
homogeneous atmosphere would be dynamically unstable.

Fig. 14.—Cassini’s homogeneous-atmosphere model. The heavy arc rep-
resents Earth’s surface, with center C; the light arc is the top of the atmo-
sphere. The observer is at O, where the apparent zenith distance is z; the ray is
refracted at P, where the local zenith distance above the air is �.
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Of course Oriani’s theorem ensures that Cassini’s model is
good near the zenith, but this homogeneous model continues
to work well surprisingly far from the zenith. Cassini’s model
at least gives finite (if wrong) values of the right sign at the
horizon, while the series expansion diverges several degrees
above the horizon, and the truncated series used by Stone
(1996) gives negative values below about 2� altitude.

In fact, at 70� Z.D. Cassini’s model differs from the Stan-
dard Atmosphere refraction by only 17 milliarcseconds (mas),
while the Green-Stone approximation is off by 41 mas. At 74�

Z.D., Cassini is off by 51 mas and the Green-Stone approxi-
mation is off by 122 mas. In this region, the Cassini model has
only 42% the error of Stone’s ‘‘accurate’’ formula.

The superiority of Cassini’s model to the truncated series
expansion can be understood as follows: Truncating the series,
whose terms’ coefficients are essentially height moments of
the refractivity, is equivalent to setting the omitted moments to
zero. But that would require negative densities in parts of the
upper atmosphere. Clearly, Cassini’s model, while not very
realistic, is less absurd than negative densities.

But, as Cassini’s model itself is not realistic, one should be
able to do still better. As refractions for different models differ
appreciably beyond 74� Z.D., we need to ask what range of
models can be considered realistic, and how much they differ.

10.1. Range of Plausible Models

The ‘‘adiabatic’’ atmosphere model shown in Figure 15 has
a lapse rate of 10 K km�1 throughout. The real atmosphere
cannot have such a steep lapse rate—the actual dry adiabatic
lapse rate is slightly smaller than 10 K per kilometer—so this is
surely a lower limit to the refraction. Likewise, the real at-
mosphere is never isothermal; so, that model is surely an
upper limit to the range of plausible refractions, except within
a degree or two of the horizon, where shallow inversions can
produce much larger values.

Therefore, except very near the horizon, the actual refrac-
tion must be confined between these two models, which differ
by only 11 mas at 70� Z.D., and 44 mas at 75�. Figure 15
shows that the Standard Atmosphere is about midway between
these two extreme models, which helps explain why Standard
Atmosphere refraction has proved to be so satisfactory in

practice. Even at 77� Z.D., the isothermal model (which is
slightly worse than the ‘‘adiabatic’’ model) differs from the
standard model by slightly less than 50 mas, the tolerance
limit set by Stone (1996) for accurate work. So refraction
based on the Standard Atmosphere is certainly not in error by
as much as 50 mas even at 77

�
Z.D., and perhaps a bit farther

in most cases.
This limit is considerably larger than a literal reading of

Oriani’s mathematical result would suggest. But his theorem
applies to all possible distributions of refractivity, regardless
of whether they are stable against convection, or are probable
states of the atmosphere. That is, Oriani’s theorem would still
apply if the atmosphere were replaced by an equivalent mass of
water, or if the density of the atmosphere increased upward
instead of decreasing. Physically possible atmospheres are a
small subset of the refractive structures to which the theorem
applies, and likely states of the atmosphere are an even smaller
set. (Note that Biot [1838, 1854] made similar arguments long
ago: the possible states of the atmosphere are sufficiently lim-
ited that the range of possible refractions is likewise limited.)

10.2. Comments on the Isothermal Model

The isothermal model differs from the standard model by less
than 0.4 as much as does Cassini’s model, so it is even better
suited than Cassini’s for use as an approximate refraction. Its
error, compared with the standard model, is only 26 mas at
75� Z.D., 49 mas at 77�, and 105 mas at 79�—about 7 times
smaller than the errors of Green’s truncated series used by
Stone (1996).

However, the isothermal model has long been known to
give too large a refraction near the horizon. It was first used by
Newton; but even in his day, Flamsteed could see that
observations of refraction did not fit the model—a discrepancy
that hastened the falling-out between Newton and Flamsteed.

The isothermal model’s deficiencies have sometimes been
blamed on its too-warm upper regions. But, in view of the
systematic behavior shown in Figures 7 and 9, the real reason
for the excessive horizontal refraction of this model is obvious:
it has the wrong lapse rate at the observer. Indeed, even Brook
Taylor (1715) found, in the last paragraph of his Methodus
Incrementorum (see Feigenbaum 1981 for an English transla-
tion), that the radius of curvature of a horizontal ray in the
exponential model is about 5 times the radius of Earth; but the
true ratio is closer to 7, the value adopted by Lambert (1759)
from an analysis of Cassini’s measurement of dip of the sea
horizon, and well established in geodesy since then. This ex-
cessive curvature of the isothermal model’s horizontal ray
keeps it near the ground longer than is realistic, thus producing
the excessive refraction.

However, the lapse rate at the surface is not the whole story.
The NBL7 model differs even more from the standard lapse
rate than does the isothermal model, but it lies between the
isothermal model and the standard in Figure 15. Yet, as is well
known, the isothermal model differs from the standard model
by only 3A2 at the horizon, while NBL7 produces 11A3 larger
horizontal refraction than standard does. In fact, these two
models cross 410 above the horizon, where they both exceed
the standard-model refraction by 8900.

Similarly, the NBL9 model, with twice as big an inversion as
NBL7, differs nearly twice as much from the standard-model
refraction near 75

�
Z.D. as the NBL7 model does, but it still

crosses the isothermal model at an altitude of 1
�
250, where they

both exceed the standard refraction by nearly 4300. Evidently,

Fig. 15.—Refraction for various models minus refraction for the Standard
Atmosphere, as functions of zenith distance. All models have the same tem-
perature and pressure at the observer. The Standard Atmosphere is not shown;
it would be a horizontal line at ordinate zero.
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as was already seen in Figure 12, the refraction between 75� and
80

�
Z.D. depends on the mean lapse rate of the whole atmo-

sphere, but the effect is small, hardly amounting to a tenth of an
arcsecond up to 79� or 80�.

It should be clear from these examples that the differences
in refraction between models with the same conditions at the
observer represent a smoothed picture of their temperature
profiles: differences in the upper parts of the model atmo-
spheres produce differences in refraction 10

�
or 15

�
above the

horizon—where, in any case, the differences among physically
plausible models are a fraction of a second—while differences
in the boundary layer, just above the observer, produce much
larger differences in the horizontal refractions, amounting to
many minutes, or even a few degrees, of arc.

11. CONCLUSION

If the refraction integrand is kept in the form

tan �
dn

n
ð11Þ

instead of being transformed, it is clear where the refraction
comes from (see Figs. 11–13). The refractive index n varies
only between 1.0000 and 1.0003, while tan � varies from zero
to infinity; obviously, tan � is responsible for all the important
effects.

Physically, the ray slope tan � depends on its curvature only
near the horizon. The ray curvature is proportional to the
component of the refractivity gradient perpendicular to the ray,
which is very small near the zenith and largest at the horizon. So
the local zenith distance � is nearly constant along the ray near
the zenith, which accounts for Oriani’s theorem: atmospheric
structure is unimportant here. But, by the argument of Fabritius
(1878), � varies strongly near the horizon, because of the re-
fractive invariant. Consequently, tan � is enormous near the
ground for rays near the horizon, and much smaller a few
kilometers higher up: the lowest layers become progressively
more important near the horizon, where the lapse rate at the
observer plays a dominant role, as it determines the ray cur-
vature where tan � is largest.

Unfortunately, this straightforward physics is completely
obscured by the transformations of variable used to construct
refraction tables by the series-expansion method introduced by
Lambert (1759). Although Ivory (1823) clearly shows that

many terms must be used in the series expansion, even near the
zenith, because the series is only semiconvergent, textbooks
such as Ball (1915) and Green (1985) have given the impres-
sion that truncating the series after the second term provides an
adequate approximation—even though it is worse everywhere
than Cassini’s model.
The series-expansion approach is misleading, inaccurate,

and inefficient compared with the numerical quadrature method
introduced by Biot in 1836, which is now the recommended
method (Seidelmann 1992) for calculating refraction. It is time
for series expansions in tan z to disappear from the textbooks
and fade into history. If a simple approximation for refraction is
needed, Cassini’s model is quite adequate for most practical
purposes out to about 80� Z.D.
Refraction within about 5

�
of the horizon is so variable that

no a priori formula or table can be expected to give accurate
values there; the local lapse rate and thickness of the boundary
layer above the observer must be known. However, numerical
integrations using the standard lapse rate, matched to the ac-
tual temperature and pressure at the observer, should give
values good to a minute of arc or so—that is, good enough for
telescope pointing—down to 2

�
or 3

�
apparent altitude.

Below that, numerical integrations will give useful values if
the actual boundary-layer lapse rate and thickness are known,
but only the bottom kilometer or so of the atmosphere needs to
be measured, and ordinary balloon soundings are adequate. At
and below the astronomical horizon, the refraction depends
primarily on atmospheric structure below the observer and
varies so much (tens of minutes, or even several degrees) that
only very crude predictions can be made. The observed time of
sunset at a sea horizon often varies by a few minutes from day
to day, and the variations increase with height above the sea.
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Lombroso, and Kristian Schlegel provided invaluable assis-
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Sampson, Siebren van der Werf, Louise Young, and a referee
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