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Introduction:
What is a mean field game?



What is a mean field game?

A finite game. Nodes represent players, edges interactions.
a

b

c

d

e

f

A game with 6 players, a, . . . , f , over a

complete graph (each is influenced by all).

3



What is a mean field game?

To each player we associate an action.
a: ua

b: ub

c: uc

d: ud

e: ue

f: uf

A game with 6 players: a, . . . , f .

Players take actions: ua, . . . , uf
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What is a mean field game?

Game theory: the study of strategic interactions among rational agents.

ub

uc

ud

ue

uf
b

c

d

e

f

a: ua ∈ BRa(ub, . . . , uf )

A game with 6 players: a, . . . , f .

Players take actions: ua, . . . , uf

Aims to find the best response (defined

from a preference structure).
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What is a mean field game?

An action profile (ua, . . . , uf ) is a Nash equilibrium when

no player can gain from a unilateral deviation from the profile.

→ Nash 1950, 1951,

Most common setups lead to a system of coupled (in)equalities,

growing quickly with the number of players in the game.

What hopes do we have to compute Nash equilibria

when the number of players in the game is very large?
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What is a mean field game?

Mean field game (MFG) theory restates game theory as an

interaction of each player with the distribution of other players.

7



What is a mean field game?

The mean field game hypothesis:

The player population is homogeneous: each player is representative.

The mean field game consistency condition:

The best response of the representative player reacting to the mass behavior applied to

all agents generates the same mass behavior.
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The MFG equation



The MFG equation: Problem formulation – Vanilla Optimal Control

Action: α : t 7→ αt ∈ A

State equation (SDE):

dXt = b(t,Xt , αt)dt + σ(t,Xt , αt)dWt

X0 ∼ m0

(Finite horizon) Cost of using α:

J(α) = E
[∫ T

0

f (t,Xt , αt)dt + g(XT )

]
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The MFG equation: Problem formulation

Action: α : t 7→ αt ∈ A Evolution of the mass: m : t 7→ mt

State equation (SDE):

dXt = b(t,Xt ,mt , αt)dt + σ(t,Xt ,mt , αt)dWt

X0 ∼ m0

(Finite horizon) Cost of using α facing the mass m:

J(α;m) = E
[∫ T

0

f (t,Xt , αt ,mt)dt + g(XT ,mT )

]

Consistency condition:

1. Fix a distribution flow m : t 7→ mt

2. Solve the stochastic control problem â = argminα J(α;m)

3. Determine the distribution flow m̂ : t 7→ m̂t such that m̂t is the distribution of

X̂t = Xt(α̂, m̂) at all times t:

m̂t = L(X̂t)
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The MFG equation: McKean-Vlasov SDE

Consistency condition:

1. Fix a distribution flow m : t 7→ mt

2. Solve the stochastic control problem â = argminα J(α;m)

3. Determine the distribution flow m̂ : t 7→ m̂t such that m̂t = L(X̂t).

The MFG solution is a fixed point!

Find â solving step 2 given m̂ ⇄ Find m̂ solving step 3 given α̂

Solving step 2 (Maximum principle, HJB,...) then enforcing the fixed point leads to a

McKean-Vlasov forward-backward SDE: the MFG equation.

There is an analytical counterpart in the form of a coupled forward-backward nonlinear

PDE system: Kolmogorov (forward in time) and HJB (backward in time).
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Research summary
History, development, and horizon



Research

→ Related work in economic theory (Aumann 196x, Jovanovic & Rosenthal 1989)

→ Connecting MFGs with game theory (Lasry & Lions 2006, Huang et al 2006)

→ First extensions: Discrete space/time, infinite time horizon, extended MFGs

→ Other state equations: Boundary conditions, degeneracy, common noise

→ Other types of players: Multi-population, Major players

→ Mean-field optimal control, mean-field type games

→ Numerical methods: classical, machine learning

→ Optimal stopping, sparse control, impulse control

→ Other types of equilibria, partial information

→ Heterogeneous populations, games on random graphs, Graphon games
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Applications of MFGs



Applications

→ Crowd motion (evacuation, public space safety)

Figure 1: Fundamental diagrams for pedestrian traffic flow in controlled experiments Wang et al 2019

→ Epidemiology (vaccination, testing, social distancing policy optimization)

→ Trading (optimal execution, HFT, crypto)

→ Markets (price formation, resource extraction)

→ Networks (communication, coordination of electric loads)
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Applications

→ Crowd motion (evacuation, public space safety)

→ Epidemiology (vaccination, testing, social distancing policy optimization)

E I

R

βαt

∫
aρt(da, I )

γ

η

D

S

δ

ϵ

Figure 2: Optimal incentives to mitigate epidemics: A Stackelberg mean field game approach, Aurell et al 2021

→ Trading (optimal execution, HFT, crypto)

→ Markets (price formation, resource extraction)

→ Networks (communication, coordination of electric loads)
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Applications

→ Crowd motion (evacuation, public space safety)

→ Epidemiology (vaccination, testing, social distancing policy optimization)

→ Trading (optimal execution, HFT, crypto)

Figure 3: Mean-Field Game Strategies for Optimal Execution, Huang et al 2019

→ Resource management (smart energy grids, oil extraction)

→ and more (communication networks, ...)
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Applications

→ Crowd motion (evacuation, public space safety)

→ Epidemiology (vaccination, testing, social distancing policy optimization)

→ Trading (optimal execution, HFT, crypto)

→ Resource management (smart energy grids, oil extraction)

Figure 4: An Extended Mean Field Game for Storage in Smart Grids, Alasseur et al 2019

→ and more (communication networks, cyber security, )
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Applications

→ Crowd motion (evacuation, public space safety)

→ Epidemiology (vaccination, testing, social distancing policy optimization)

→ Trading (optimal execution, HFT, crypto)

→ Resource management (smart energy grids, oil extraction)

→ And more (wireless communication, systemic risk, . . . )
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What about machine learning?
Deep learning, Reinforcement learning, GANs



Deep learning

Recall: finding an MFG equilibrium can be reduced to solving a McKean-Vlasov

forward-backward system of SDEs (MKV FBSDE) which reads

dXt = B(t,Xt ,L(X ),Yt)dt + σdWt

dYt = −F (t,Xt ,L(Xt),Yt , σ
TZt)dt + ZtdWt

with boundary conditions X0 ∼ m0 and YT = G(XT ,L(XT )).

The backward equation for Y is forced on us by the optimization (”step 2”) and

makes solving the problem VERY HARD!

Path to numerically tractable problem:

1. Time-change (”Sannikov’s Trick”)

2. Discretization (Monte Carlo approximation)

3. Parameterization (Deep Learning)
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Deep learning

1.

Controller chooses initial condition y0 and volatility z of Y to reach the target.

Replace MVK FBSDE with the optimization problem:

JFBSDE (y0, z) = E
[
∥Y y0,z

T − G(X y0,z
T ,L(X y0,z

T ))∥2
]

subject to

dX y0,z
t = B(t,X y0,z

t ,L(X y0,z
t ),Y y0,z

t )dt + σdWt , X y0,z
0 ∼ m0,

dY y0,z
t = −F (t,X y0,z

t ,L(X y0,z
t ),Y y0,z

t , σT zt)dt + ztdWt , Y y0,z
0 = y0
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Deep learning

2.

Discretize the state distribution:

JN
FBSDE (y0, z) =

1

N

N∑
i=1

∥Y i,y0,z
T − G(X i,y0,z

T ,mN,y0,z
T )∥2

subject to (for i = 1, . . . ,N)

dX i,y0,z
t = B(t,X i,y0,z

t ,mN,y0,z
t ,Y i,y0,z

t )dt + σdW i
t , X i,y0,z

0 ∼ m0,

dY i,y0,z
t = −F (t,X i,y0,z

t ,mN,y0,z
t ,Y i,y0,z

t , σT zt)dt + ztdW
i
t , Y i,y0,z

0 = y0

where

mN,y0,z
t =

1

N

N∑
i=1

δ
X

i,y0,z
t
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Deep learning

3.

Replace y0, z with neural networks yθ
0 , z

θ parameterized by θ

JN
FBSDE (θ) =

1

N

N∑
i=1

∥Y i,θ
T − G(X ı,θ

T ,mN,θ
T )∥2

subject to (for i = 1, . . . ,N)

dX i,θ
t = B(t,X i,θ

t ,mN,θ
t ,Y i,θ

t )dt + σdW i
t , X i,θ

0 ∼ m0,

dY i,θ
t = −F (t,X i,θ

t ,mN,θ
t ,Y i,θ

t , σT zθt )dt + zθt dW
i
t , Y i,θ

0 = yθ
0

4. Discretize time, 5. Setup for SGD, 6. . . .
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Deep learning

→ SGD for MKV FBSDEs, Deep Galerkin methods for MF PDEs (Carmona &

Lauriere, 2021)

→ SGD for pure-jump MKV FBSDEs (Aurell et al, 2021)
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Reinforcement learning

Vanilla:

Expected reward: E

[
NT−1∑
n=0

f (Xα
tn , αtn ) + g(Xα

tn )

]
Transition probability: P(Xα

tn=1
= x ′|Xα

tn = x , αtn = a) = p(x ′|x , a)

The optimal Q-function:

Q∗
NT

(x , a) = g(x)

Q∗
n (x , a) = f (x , a) +

∑
x′∈X

p(x ′|x , a)min
a′

Q∗
n+1(x

′, a′)
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Reinforcement learning

MFG:

Expected reward: E

[
NT−1∑
n=0

f (Xα,µ
tn , αtn , µtn ) + g(Xα,µ

T , µT )

]
Transition probability: P(Xα

tn+1
= x ′|Xα

tn = x , αtn = a, µtn = m) = p(x ′|x , a,m)

The optimal Q-function (with µ = (µtn )
N
n=0T frozen):

Q∗
NT ,µ(x , a) = g(x , µT )

Q∗
n,µ(x , a) = f (x , a, µtn ) +

∑
x′∈X

p(x ′|x , a, µtn )min
a′

Q∗
n+1,µ(x

′, a′)

As expected: the optimal control α̂tn (x) = argmaxa Q
∗
n,µ(x , a) depends on µ.

The system is not closed! Impose the consistency condition:

µ̂tn = L(X α̂
tn )
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Reinforcement learning

Simple approach:

1. Start with an initial guess µ(0)

2. Solve the backward equation Q(k+1) = Q∗
µ(k) :

Q
(k+1)
NT

(x , a) = g(x , µ
(k)
T )

Q(k+1)
n (x , a) = f (x , a, µ

(k)
tn ) +

∑
x′∈X

p(x ′|x , a, µ(k)
tn )min

a′
Q∗

n+1(x
′, a′)

3. Compute the optimal control given µ(k):

α̂
(k+1)
tn (x) = Q(k+1)

n (x , a)

4. Solve the forward equation for the state distribution flow, assuming all agents use

α̂(k+1):
µ
(k+1)
t0

(x) = µt0(x)

µ
(k+1)
tn+1

(x) =
∑
x∈X

p(x ′, x , α
(k+1)
tn (x ′), µ

(k+1)
tn )
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Reinforcement Learning

→ RL for stationary MFGs (Subramanian & Mahajan, 2019)

→ Mean field MDP and Q-learning (Carmona et al, 2021)

→ ”Unified Two Timescales Mean Field Q-learning” (Angiuli et al, 2021)

→ ”Mean Field PSRO” (Muller et al, 2021)

→ Entropy regularization (Cui & Koeppl, 2021)
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Further connections with ML

Concave Utility Reinforcement Learning (CURL) extends RL from linear to concave

utilities in the occupancy measure induced by the agent’s policy.

Decision making in the face of a non-linear distribution dependence ... MFG?

”Our numerical illustrations suggest that it may be worth considering MFG algorithms

for addressing CURL problems.”
- Concave Utility Reinforcement Learning: the Mean-field Game viewpoint (Geist et al, 2021)

Generative adversarial networks (GAN): a minimax zero-sum two-player game with

objective depending non-linearly on distributions.

A multipopulation MFG ... with two teams?

”MFGs have the structure of GANs, and GANs are MFGs under the Pareto Optimality

criterion.”
- Connecting GANs, mean-field games, and optimal transport (Cao et al, 2021)
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