
Back to #amycoders Homepage

Circledrawing-Compo

The mission

Here comes the logical predecessor of the Linedrawing-Compo: The Circledrawing-compo. The mission was to create a routine

drawing a circle with variable radius to a chunky-screen. There were both a fastest and shortest compo again. The choice of the

algorithm was free.

The deadline was: sunday, october 12st, 1997 at 21.00 CET

Rules:

The size of the buffer is 256x256, with a color depth of 256.

Your circleroutine has to accept following input:

D0.l/D1.l: X / Y (middle)

D2.l radius (1-127)

D3.b color

A0: Pointer to chunky buffer.

The other registers are in undefined state. (Your routine will be disqualified, if it is using input from any other register,

than the mentioned ones)

All registers may be trashed, except a7.

The circle has to be closed. (no gaps)

The circle is not meant to be filled !

The circle must be symmetrical (not egg-like shapes..)

no clipping required

The routine must be working on 68020-68060! When you are sick enough to use selfmodifying code, make sure that it does

also work on 040/060.

The speed-tests will be done on a 68040/40. The time needed to draw an amount of circle at different positions and with

different sizes will be measured. (small hint: I added some more info in the compo-machine in the linecompo package.

The Results (shortest):

Nine people competed in this compo. The routines were quite interesting and different. A lot of different ideas were involved. One

idea was the "bruteforce" approach - scanning the whole screen for the circle with a pythagoras distance formula. These routines

got incredible slow. The slowest routine is more than 11,000 times slower, than the fastest one in this compo :)

But Trover whose routine won, did show that it is possible to do both a (relatively) fast and shor routine. He also contributed with a

36 bytes version, which needs only 40 rasterlines to draw the testcircles.

The routines in the "shortest" compo had to draw three circles. Two with a radius of 32 and one with a radius of 64. The testroutine

is included in the contribution package, which can be downloaded at the bottom of this page.

Detailed Results:

Place Handle Length Speed Algorithm

1. Trevor 34 1458 Sin/Cos

2. Piru 38 4950
Bruteforce

Pythagoras/divs

3. Nitch 40 2920 Bruteforce Pythagoras/2r

Raylight 40 5534
Bruteforce

Pythagoras/divs

5. Nao *1 40 2298 Sin/Cos

6. R.A.Y & Sniper 44 23320 ! Bruteforce Pythagoras/sqrt

7. Dave 46 5 Bresenham

8. Chip 72-80 3.5 Bresenham

9. Blueberry 100 2 ! Bresenham

*1 Routine was moved down a place due to its inaccuracy.

The Results (fastest):

Also 9 routines were contributed here. The circleroutines had to draw 504 Circles with 63 different radii, so always 8 circle with the

same radius. This lead to a problem with some routines using a kind of "Bruteforce" approach again, by either using a very huge

table or generating 128 subroutines, one for each radius. Since these routines speed depended a lot on the memory usage their

speed was dependant of the order, in which the circles were drawn. I did a best case and a worst case timing for these routines.

(written in parenthesis)

Using the best-case timing only would have been pretty unfair towards the other routines, since no everyday-application would sort

the circles by size before drawing. So I used the average value of best and worst time to compare these special routines with the

others.

This competition was won by Piru. His routine is generating subroutines for every radius, cleverly gathering pixels to .l and .w

writes. Due to this it is very cache dependant. So the very clean and short routine by Blueberry, who became second, is faster in

a lot of cases.

Detailed Results:

Place Handle Length Speed Algorithm

1. Piru 436 av. 492 (547/437)
One routine per

radius

2. Blueberry 100 510 Bresenham *1

3. EFT 112 518 Bresenham *1

4. Dave 188 551 Bresenham *1

5. Hitchhiker 146 557 Bresenham *1

6. Raylight 162 av. 564 (636/492)
One routine per

radius

7. Mhoram 150 589 Bresenham *1

8. Piru, second entry 292 av. 662 (723/601) Big table

9. Chip 80 945 Bresenham *1

*1 Please note, that I didnt take a too close look to the routines.

So routines marked as using Bresenham might also use a similar algorithm instead.

How does it work ?

I am only describing the best two routines of the "shortest-circleroutine" compo here. Download the whole package of routines below.

The winning routine by Trevor. This is the 36 bytes version, which is a lot faster. The 34 bytes version is using a "moveq #-128,d7" at the beginning instead.

This routine is using the parametric equation of a circle: X=r*cos(t) ,Y=r*sin(t). The sinus and cosinus function is calculated by a recursive formula with a stepwidth of

2*pi*256 steps, which is enough to draw a closed circle. Read the Sinustable Generation Tutorial for further info. ("Another Algebraic Approach")

;Winning routine by Trevor, 36 bytes version.
 move.w #256*7,d7 ;steps*2*pi
 lsl #8,d2 ;d2=x
 moveq #0,d4 ;d4=y
.hamburger
 move.w d2,d5
 asr.w #8,d5
 subx.w d5,d4 ;y=y-(x/256)

 move.l d4,d6
 asr.w #8,d6
 addx.w d6,d2 ;x=x+(y/256)

 add.b d1,d6 ;000000000000y+y1
 lsl.w #8,d6 ;00000000y+y10000
 move.b d5,d6 ;00000000y+y1000x
 add.b d0,d6 ;00000000y+y1x+x0
 move.b d3,(a0,d6.l)
 dbf d7,.hamburger ; :P

Pirus 38 byte routine, which became second:

It is using a kind of "bruteforce" approach. It is stepping through the whole 256x256 array of the chunky buffer and calculating the distance from the midpoint of the

pythagoras formula. If the distance is between r+1 and r, the pixel is considered to be on the circle. (A rasterized circle has an area in fact.. :))

Since a squareroot-routine , which would be needed for the formula d=sqrt(x^2+y^2), is extremly slow and not that short Piru used another trick. He divided d 2̂ by r. And

1;r] r e Z then. This is mathematically not entirely correct (figure that out byself.. :)) but it seems to be accurate enough, since the circles drawn with this routine are looking ok.

;Second placer by piru, 38 bytes.
 moveq #0,d7 init loop counter, also y:x 24:8

.loop moveq #0,d4 clear x
 move.l d7,d5
 move.b d7,d4 x=offs & $00ff
 lsr.w #8,d5 y=offs>>8
 sub.w d0,d4 x=x-xc
 sub.w d1,d5 y=y-yc

 muls.w d4,d4 x^2
 muls.w d5,d5 y^2
 add.l d5,d4 x^2+y^2
 divu.w d2,d4 (x^2+y^2)/r
 sub.w d2,d4 (x^2+y^2)/r-r
 bgt.b .nopix (x^2+y^2)/r-r<0 ?
 addq.w #1,d4 (x^2+y^2)/r-r+1
 blt.b .nopix (x^2+y^2)/r-r+1<0 ? move.b d3,(a0) put pixel .nopix addq.w #1,d7 loop 64k times addq.l #1,a0 walk forward in buffer bne.b .loop

Download

In case you want to see the contributions code. Download the package here Please remember that, even if you can download

these routines, they are still not public domain. Ask before using any of these routines, or give credits at least.

Last change: 16.01.2001

