back

_Gravity Particle Compo

Finally, after a long break, here is another competition. Your task is to size optimize a gravity
particle routine.

The deadline will be : Sunday, July Sth 1998 at 18.00 CET. Everything has to be mailed to
amycoders@ibm.net till then.

Your Task:

You have to simulate a lot of particles with a very small mass moving around an object with a big
mass. Interaction between the particles is not taken mto account.

A pseudocode program:

ob.x, ob.y = Position of the heavy object.
gravity= gravity (a constant)

part[] = array of particles

part[].px, part[],py = position of particle
part[].vx, part[].vy = velocity of particle

Loop +1...n

xdif = ob.x - part[i].px

ydif = ob.y - part[i].py

length = xdif*xdiftydif*ydif

length = length * gravity

part[i].vx = part[i].vx + xdif / length ;<-- Please note, that dividing by zero is not very healthy.
Do something against it.

part[i].vy = part[i].vy + ydif / length
part[1].px = part[i].px + part[i].vx
part[i].py = part[i].py + part[i].vy

{ ... plotparticle ... }

loopend

NNk L=

—_—
— o o A

This is only an approximation of course.

e Good values for "gravity” are 0 .. 1.0. So you might leave it away.
¢ The amount of particles you have to plot is 4096. No less no more. (They may not be visible
at once due to clipping)
e The "heavy object” must be positioned at the middle of the screen (128;128)
¢ Your routine will be called with the following parameters:
o A0 pomter to a 256x256 pixel chunky screen.
o Al poiter to the particle array. The particle struct is like this:

0 word px
2 word py
4 word vx
6 word vy

so the structure has a size of 8 bytes.
Each word represents a 12.4 bits fixed point number. (You will need fixed point
numbers for a working implementation)

¢ Your plotpartice must set a single pixel of an aribitrary color except 0.

¢ You should check whether the particle is in the visible screen area before plotting it.
That means: All visible particles have to be drawn, no "mvisible" particle may be drawn.

¢ Allyour data has to be in a BSS section or it will be added to your routines length.

This time judgeing and ranking the entry has been quite difficult. Four out of eight entries violated the
rules in some way. One entry didnt work at all and was taken out because of that. (Daves

entry). The other entries had flaws like uninitalized variables (registers) or they were plotting pixels
mto memory other than the chunky buffer.

I solved this problem by added the number of bytes needed to fix the flaw plus two extra bytes as
"perlality"

Thanks must go to nao for helping to test and rank the routines

Place Contributor Length

1. Merko 60+2+2p *) ***)
2. Nao 64+0+2p **)

3. Villelas&Dr. Stump 66+0+2p **)

Blueberry 68 *#*)

6. Pk 98 wx)
7. Psycho 76 **E)

*) Merkos routine didnt initalise the register D4. Thus the first particle could be drawn at an
erranous position. A moveq #0,d4 had to be added to fix this, adding two bytes.

**) These routines drew pixel into memory areas adjacent to the chunky buffer. This could have
been easily fixed by inserting an eor #$8080,dx to calculate the pixel position offset instead of using
an indexed addressing mode. No extra byte required.

**%*) These routines used an assymetric "particle space" by setting the "heavy object" to (128;128)
mn the particle space (thats not the screen space). Since the placement of the heavy object in the
"particle space" wasnt mentioned in the competition rules I didnt count this as flaw.

In case you want to see the contributions code. Download the package here Please remember
that even though you can download these routines, they are still not public domain. Ask
before using any of these routines, or give credits at least.

Last change: 16.01.2001

