
Back

SQRT-Compo

The mission

The competitions aim was to optimize a routine calculating a 64k sqrt-tab by size. The routine with the least bytes used was

supposed to win. The deadline was at sunday, june 8, 1997.

Rules:

Only 68020++ integer asm-commands.

65536 one byte values have to be calculated (64kbyte).

The given range is 0..65535.

The tables destination is a label called "sqrttab" in a bss-area.

All registers are in an undefined state, when the routine is called.

The routine has to be finished with "RTS", which is not accounted to the overall routine-length.

All fraction parts have to be cut off (no rounding) (2.7 gets 2 then for example).

No AmigaOS or whatever libs may be used.

The results

It seems, that the exercise was too easy :) Far over 50% of the 8 contributors reached a point, where no further optimizing seems

possible. So we have 5 winners - but I have to point out that, except me (azure) who had to make to first contribution due to

fairness reasons, Dave was the first one to contribute with a "best-case" routine.

Detailed results:

Place Contributor Length of the routine

1. Dave 22 bytes

Grey 22 bytes

Morbid 22 bytes

Skjeggspir 22 bytes

Azure 22 bytes

2. Kruztur 24 bytes

Psalt and Accede 24 bytes

3. Dig-It 26 bytes

How does it work ?

All contributed routines are using the same algorithm. Its based on the fact, that the intervalls betweem square-numbers increase by two, the higher the

numbers are getting. The 22 byte implementations were almost identical - they differed only a bit in register usage etc. I will use Greys routine as an example,

since it is the best documented one.

* ** *
* **** Tiny square-root-table generator ****** (c) gREY in 1997 **** *
* ****** For the first official #amycoders coding competition ****** *
* *** Developed in 5 minutes while watching ST:TNG "Half a life" *** *
* ** *

Sqrt:
 lea sqrttab,a0 * load adress of table
 moveq #0,d0 * clear d0 (start vlaue = 0)
.outer:
 move.w d0,d1 * save d0

 add.w d1,d1 * Multiply d1 with 2
 * dbra below saves us from adding 1!
.inner:
 move.b d0,(a0)+ * fill sqrttab
 dbra d1,.inner * as many times as needed

 addq.b #1,d0 * increase d0 by 1
 bcc.s .outer * as long as d0 =<255! rts * ** *

Psalt and Accede used a very nice trick to save some bytes while setting 3 registers to zero. They took advantage of the fact, that "fresh" BBS-areas are filled

with zeros.

; Square root routine by Psalt & Accede
; Made for the #Amycoders sqrt competition.
; Somewhat inaccurate, like sqrt(15)=3
; But fast, and very small...
; bottom and the rts.
; Feel free to use it!
; contact us:
; Accede@hotmail.com
; Psalt@hotmail.com

initsqr lea sqrttab,a0 ;
 movem.w (a0),d0/d2/d3 ;
.oloop move.b d2,(a0)+
 dbra d0,.oloop
 addq.w #2,d3
 move.w d3,d0
 addq.b #1,d2
.yo bne.s .oloop
 rts

Also Dig-Its routine is quite interesting: He is the only one, who made a routine writing the table backwards !

;;
;; dig-it @ TBL ...
;;

j: lea sqrttab+65536,a0
 moveq #-1,d0
 move.w #$1ff,d2

.loop1:
 move.w d2,d1
.loop2:
 move.b d0,-(a0)
 subq #1,d1
 bne.s .loop2
 subq #1,d0
 subq #2,d2
 bge.s .loop1

end: rts

Thats it - the other routines were more or less the same. Download a package with all contributions right here.

Last change: 16.01.2001

