
Back to #amycoders Homepage

Triangledrawing-Compo

The mission

Another competition of the sort "draw this, short and fast". This time your aim should be either to create a very short or a

very fast routine to draw a simple flat triangle.

The choice of your algorithm is free. The rules are below.

The deadline was: sunday, november 9th, 1997 at 21.00 CET

Rules:

The size of the buffer is 256x256, with a color depth of 256.

Your triangle-routine has to accept following input:

D0.l color

A0 Pointer to chunky buffer.

A1 Pointer to six words containing the screen coordinates of the triangles edges. (X1/Y1/X2/Y2/X3/Y3) Note,

that that the coordinates arent sorted in any way

The other registers are in undefined state. (Your routine will be disqualified, if it is using input from any other

register, than the mentioned ones)

All registers may be trashed, except a7.

The Triangle has to be filled. No missing pixels !

No clipping required

The triangles size is Xdelta=1-127, Ydelta=1-127

Table may be precalculated within an init-routine, which is called once at the beginning. Maximum table size is

512kb.

The routine must be working on 68020-68060! When you are sick enough to use selfmodifying code, make sure

that it does also work on 040/060.

The speed-tests will be done on a 68040/40. The time needed to draw an amount of triangles at different positions

and with different sizes will be measured. (small hint: I added some more info in the compo-machine in the

linecompo package.

The Results (shortest)

Triangles seem to be a really scary thing for most of the coders. Only 5 contributions in this compo, but it seems that the "best case" in

length is still reached. The routines had to draw 4 triangles of different sizes and different positions. Three routines drew the triangles with

only 40(!) bytes. But Bluberrys routine was the cleanest and with only 300 rasterlines the fastest routine among all contributions to this

compo. So it is the clear winner.

Piru pointed out later, that it is even possible to get this routine to 38 bytes with a dirty trick - by using (a0).b as loop counter.

Place Contributor Length Speed Used Algorithm Accuracy

1. Blueberry 40 300 limited dual Interpolation good

2. Zuikki * 40 ~15000 Subdivision bad

Psycho * 40 ~187000 (!) Subdivision bad

4. Piru 42 1956 Recursive subdivision bad

5. Nao 48 540 Dual interpolation average

* Zuikkis and Psychos routines were moved down due to their bad accuracy and their extremly low speed.

The winning routine by Blueberry: (40 bytes)

 movem.l (a1),d1/d3/d4
 sub.l d1,d3 ; x2-x1 | y2-y1
 sub.l d1,d4 ; x3-x1 | y3-y1
 lsl.l #8,d1 ; 8.8 precision
 st.b d7 ; Loop 256 times.
.loop1: move.l d1,d2
 move.b d7,d6 ; Loop n times, this makes a triangle.
.loop2: move.l d2,d5
 lsr.w #8,d5
 swap.w d5
 lsr.l #8,d5 ; x,y
 move.b d0,(a0,d5.l)
 add.l d4,d2 ; Inner position
 subq.b #1,d6
 bcc.b .loop2
 add.l d3,d1 ; Outer position
 subq.b #1,d7
 bcc.b .loop1

The Results (fastest)

Only 4 contributions here. But still quite a variety, which lead to some problems with judgeing them. All routines are

showing totally different habits, depending on the cpu used. In the table are the results (rasterlines for drawing 512+4

polys) for Blizzard 1230/50, Apollo (?) 1240/40 and Apollo 1260/50. As you can see the ranking is different for every cpu.

To get an overall ranking every routine got points depending on their ranking on each seperate cpu. (4= first place, 1=last

place) These points were added. As you can see the places are very close, but all over all. Bolts routine got the most

points. Blueberrys routine used longword-aligned writes, which made it very fast on 030. But the table reads, that were

neccessary due to this, lowered the performance on 040/060.

PlaceContributor Length Speed (030) Speed (040) Speed (060) Points

1. Bolt 478 1532 940 738 3+4+4=11

2. Blueberry 374 1304 952 774 4+3+3=10

3. Piru 570 1633 1050 843 2+2+1=5

4. Kalms 296 1822 1133 790 1+1+2=4

Download

In case you want to see the contributions code. Download the package here Please remember that, even if you can

download these routines, they are still not public domain. Ask before using any of these routines, or give credits

at least.

Last change: 16.01.2001

