
Back to #amycoders Homepage

Water-Compo

The mission

Water compo ? Sounds like sun'n'fun. But

well, of course you have to code something -

a routine simulating water in a 2d-array.

These routines are probably known to most

people, but it seems to me that still many

people dont really know, what makes them

tick. So I added some links, where you can

read more about this.

Kimmo Riomelas Homepage

Again we will have a "two-compos-in-one"

package: fastest waterroutine and shortest

waterroutine.

The deadline was: Sunday, December 14th,

1997.

Rules:

Your contribution has to contain up to three routines: Water_Init, which will be called once to

initialise your tables or whatever, Water_drop this has to initiate water movement at a given

position of your water-array (like throwing a stone in it, or whatever :)) and Water_do which is

rendering the next water frame to a given buffer.

All tables or buffers have to be in a bss-section. Otherwhise they will be counted to the

routines length.

Water_do is getting a pointer to a chunky screenbuffer in A0. All other registers contain

unpredictable values, when the routine is called.

The screenbuffers size is 256x256. 0 is the darkest color, 255 the brightest.

For the size-compo only the length of Water_init and Water_do is measured.

The speed of the routines will probably be measured on 060/50. I will try to measure it also on

030/50 and 040/40.

Water_drop will get the drops position in x=D0.l and y=D1.l.

Try to avoid overflows , when there are lots of waves !!

Your entry will be published here, when the compo is over. In case you dont want that, please

add a little note.

Here is a piece of the test-code for the water routines. Try it to make sure, that your routine doesnt

produce any overflow with it!

 moveq #31,d7
 .lop1
 move.l last,d4
 ror.l d4,d4
 add.l d7,d4
 move.l d4,last
 moveq #0,d0

 moveq #0,d1
 move.b d4,d0
 lsr.w #8,d4
 move.b d4,d1
 jsr water_drop
 dbf d7,.lop1

This is called once per frame, before the routine water_do is called. It is producing a kind of "rain"

consisting of 32 "drops" per frame.

The Results

This time the participation was really low - only three entries in the "fastest" compo and four entries in

the "shortest" compo. Not much to say about the results. The "shortest" compo was won by me

(Azure), the "fastest" compo was won by Graham. All routines were tested on 68060/50.

Strangely this time several people had problems with the rules. R.A.Y. even did far more, than was

needed. His shortest entry is also doing a kind of bumpmapping additionally, but despite of that his

routine has some flaws. (Drops where no drops should be :) Shin forgot to adjust the water to the

palette. Well - due to these problems I simply judged both entries as third placers.

Shortest Water Results:

Place Contributor Length

1. Azure 44/46

2. Graham 54

3. Shin (58)

3. R.A.Y. (60)

Fastest Water Results:

Place Contributor Speed

1. Graham 126

2. PG 134

3. Romeo 187

How was it done ?

The winning routine of the "Shortest Water" compo by Azure, 46 bytes version: (the 44 bytes version

has a little flaw)

 lea data-5,a1

 move.l (a1),d7
 lea 5(a1,d7.l),a2
 eor.w #1,(a1)
 add.l (a1)+,a1
.loop
 move.b (a1)+,d0
 add.b -256(a1),d0
 add.b 256(a1),d0
 add.w (a1),d0
 asr.b #1,d0
 sub.b (a2),d0
 spl d1
 and.b d1,d0 ; damping ??!? :)
 move.b d0,(a2)+
 move.b d0,(a0)+
 addq.w #1,d7
 bne.b .loop

Download

In case you want to see the contributions code. Download the package here Please remember that,

even if you can download these routines, they are still not public domain. Ask before using

any of these routines, or give credits at least.

Last change: 16.01.2001

